Skip to main content

Texture Profiles and Composite Kernel Frame for Hyperspectral Image Classification

  • Conference paper
  • First Online:
Advances in Brain Inspired Cognitive Systems (BICS 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10989))

Included in the following conference series:

  • 2453 Accesses

Abstract

It is of great interest in spectral-spatial features classification for High spectral images (HSI) with high spatial resolution. This paper presents a new Spectral-spatial method for improving accuracy of hyperspectral image classification. Specifically, a new texture feature extraction algorithm based on traditional LBP method is proposed directly. Texture profiles is obtained by the proposed method. A composite kernel framework is employed to join spatial and spectral features. The classifiers adopted in this work is the multinomial logistic regression. In order to illustrate the good performance of the proposed framework, the two real hyperspectral image datasets are employed. Our experimental results with real hyperspectral images indicate that the proposed framework can enhance the classification accuracy than some traditional alternatives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Richards, J.A.: Remote sensing digital image analysis 10(2), 343–380 (1995)

    Google Scholar 

  2. Bandos, T.V., Bruzzone, L., Camps-Valls, G.: Classification of hyperspectral images with regularized linear discriminant analysis. IEEE Trans. Geosci. Remote Sens. 47(3), 862–873 (2009)

    Article  Google Scholar 

  3. Li, W., Prasad, S., Fowler, J.E., Bruce, L.M.: Locality-preserving dimensionality reduction and classification for hyperspectral image analysis. IEEE Trans. Geosci. Remote Sens. 50(4), 1185–1198 (2012)

    Article  Google Scholar 

  4. Ma, L., Crawford, M.M., Yang, X., Guo, Y.: Local-manifold-learning-based graph construction for semisupervised hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 53(5), 2832–2844 (2015)

    Article  Google Scholar 

  5. Zenzo, S.D., Degloria, S.D., Bernstein, R., Kolsky, H.G.: Gaussian maximum likelihood and contextual classification algorithms for multicrop classification experiments using thematic mapper and multispectral scanner sensor data. IEEE Trans. Geosci. Remote Sens. GE-25(6), 815–824 (1987)

    Article  Google Scholar 

  6. Stathakis, D., Vasilakos, A.: Comparison of computational intelligence based classification techniques for remotely sensed optical image classification. IEEE Trans. Geosci. Remote Sens. 44(8), 2305–2318 (2006)

    Article  Google Scholar 

  7. Tuia, D., Camps-Valls, G., Matasci, G., Kanevski, M.: Learning relevant image features with multiple-kernel classification. IEEE Trans. Geosci. Remote Sens. 48(10), 3780–3791 (2010)

    Article  Google Scholar 

  8. Gu, Y., Wang, C., You, D., Zhang, Y., Wang, S., Zhang, Y.: Representative multiple kernel learning for classification in hyperspectral imagery. IEEE Trans. Geosci. Remote Sens. 50(7), 2852–2865 (2012)

    Article  Google Scholar 

  9. Li, J., Marpu, P.R., Plaza, A., Bioucas-Dias, J.M., Benediktsson, J.A.: Generalized composite kernel framework for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 51(9), 4816–4829 (2013)

    Article  Google Scholar 

  10. Fang, L., Li, S., Duan, W., Ren, J., Benediktsson, J.A.: Classification of hyperspectral images by exploiting spectral-spatial information of superpixel via multiple kernels. IEEE Trans. Geosci. Remote Sens. 53(12), 6663–6674 (2015)

    Article  Google Scholar 

  11. Fauvel, M., Benediktsson, J.A., Chanussot, J., Sveinsson, J.R.: Spectral and spatial classification of hyperspectral data using SVMs and morphological profiles. IEEE Trans. Geosci. Remote Sens. 46(11), 3804–3814 (2008)

    Article  Google Scholar 

  12. Zhang, L., Zhang, L., Tao, D., Huang, X.: On combining multiple features for hyperspectral remote sensing image classification. IEEE Trans. Geosci. Remote Sens. 50(3), 879–893 (2012)

    Article  Google Scholar 

  13. Qiao, T., Ren, J., Wang, Z., Zabalza, J., Sun, M., Zhao, H., et al.: Effective denoising and classification of hyperspectral images using curvelet transform and singular spectrum analysis. IEEE Trans. Geosci. Remote Sens. 55(99), 1–15 (2017)

    Google Scholar 

  14. Kettig, R.L., Landgrebe, D.A.: Classification of multispectral image data by extraction and classification of homogeneous objects. IEEE Trans. Geosci. Electron. 14(1), 19–26 (1976)

    Article  Google Scholar 

  15. Benediktsson, J.A., Palmason, J.A., Sveinsson, J.R.: Classification of hyperspectral data from urban areas based on extended morphological profiles. IEEE Trans. Geosci. Remote Sens. 43(3), 480–491 (2005)

    Article  Google Scholar 

  16. Zabalza, J., Ren, J., Liu, Z., Marshall, S.: Structured covariance principal component analysis for real-time onsite feature extraction and dimensionality reduction in hyperspectral imaging. Appl. Opt. 53(20), 4440 (2014)

    Article  Google Scholar 

  17. Zabalza, J., Ren, J., Yang, M., Zhang, Y., Wang, J., Marshall, S., et al.: Novel folded-PCA for improved feature extraction and data reduction with hyperspectral imaging and SAR in remote sensing. ISPRS J. Photogramm. Remote Sens. 93(7), 112–122 (2014)

    Article  Google Scholar 

  18. Zabalza, J., Ren, J., Liu, Z., Qing, C., Yang, Z.: Novel segmented stacked autoencoder for effective dimensionality reduction and feature extraction in hyperspectral imaging. Neurocomputing 185(C), 1–10 (2016)

    Article  Google Scholar 

Download references

Acknowledgments

This work has been supported by the National Science foundations of China (Grant Nos. 41301382, 61401439, 41604113, 41711530128) and foundation of key lab of spectral imaging, Xi’an Institute of Optics and Precision Mechanics of CAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cailing Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, C., Wang, H., Ren, J., Zhang, Y., Wen, J., Zhao, J. (2018). Texture Profiles and Composite Kernel Frame for Hyperspectral Image Classification. In: Ren, J., et al. Advances in Brain Inspired Cognitive Systems. BICS 2018. Lecture Notes in Computer Science(), vol 10989. Springer, Cham. https://doi.org/10.1007/978-3-030-00563-4_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00563-4_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00562-7

  • Online ISBN: 978-3-030-00563-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics