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Abstract

Tractography is a prevalent technique for in vivo imaging of the white matter fibers (a.k.a. the 

tractograms), but it is also known to be error-prone. We previously propose the Group-wise 

Tractogram Analysis (GiTA) framework for identifying anatomically valid fibers across subjects 

according to cross-subject consistency. However, the original framework is based on 

computationally expensive brute-force KNN search. In this work, we propose a more general and 

efficient extension of GiTA. Our main idea is to find the finite dimensional vector-space 

representation of the fiber tracts of varied lengths across different subjects, and we call it the 

group-wise isometric fiber embedding (GIFE). This novel GIFE framework enables the 

application of the powerful and efficient vector space data analysis methods, such as the k-d tree 

KNN search, to GiTA. However, the conventional isometric embedding frameworks are not 

suitable for GIFE due to the massive fiber tracts and the registration errors in the original GiTA 

framework. To address these issues, we propose a novel method called multidimensional 

extrapolating (MDE) to achieve GIFE. In our experiment, simulation results show quantitatively 

that our method outperforms the other methods in terms of computational efficiency/tractability 

and robustness to errors in distance measurements for real fiber embedding. In addition, real 

experiment for group-wise optic radiation bundle reconstruction also shows clear improvement in 

anatomical validity of the results from our MDE method for 47 different subjects from the Human 

Connectome Project, compared to the results of other fiber embedding methods.

1 Introduction

Tractography computes white matter fiber tracts from diffusion MRI and it is a prevalent 

technique for in-vivo measurement of anatomical connectivity of the brain. However, this 

technique is also known to be error-prone [1].

Fiber filtering methods have been proposed previously to remove redundant and 

anatomically invalid fibers based on data fidelity [2], geometrical soundness [3] and 

anatomical knowledge [4]. Yet, these methods did not explicitly address the inter-subject 

consistency and the results are not guaranteed to be consistent across subjects, or 

reproducible. We hypothesize that the errors in the fiber tracts computed with tractography 
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are random and they are not anatomically consistent across different subjects. Accordingly, 

we recently proposed a data- driven framework called Group-wise Tractogram Analysis 

(GiTA) which identifies the anatomically valid tracts as the common tracts among different 

subjects [5]. The idea is to measure the commonness of each fiber tract with respect to all 

different subjects and identify those that are common among most of the subjects. A major 

limitation of GiTA is that this framework is computationally very expensive, as it requires 

comparing all tracts across all subjects. In addition, the efficient and powerful data analysis 

methods based on vector-space data representation, such as the k-d tree KNN search, are not 

applicable due to the unequaled lengths of the fiber tracts. It is also invalid to resampled the 

fiber curves to the same number of points for computing the Euclidean distance since this 

generally doesn’t reflect the intrinsic geometrical distance between the fiber curves. Besides, 

the GiTA framework also suffers from inter-subject misalignment due to registration error.

To address the aforementioned issues, we propose a novel group-wise isometric fiber 

embedding (GIFE) framework. The GIFE framework tries to find the finite dimensional 

embedding of the fiber tracts of any target subject, given the precomputed embedding of the 

fiber tracts for the reference subject. This GIFE framework is naturally parallelizable and it 

does not require computing the full pairwise distance matrices across all pairs of subjects but 

only the distances between the fibers of the target subjects and the reference subject. 

Furthermore, we also handle the inter-subject misalignment in the embedding and derive a 

novel method called multidimensional extrapolating (MDE), as a tribute to the original 

multidimensional scaling (MDS) framework, to achieve robust and efficient GIFE. MDE can 

be viewed as a novel variant of the multidimensional unfolding (MDU) framework [6, 7]. 

Unlike the conventional MDU, MDE allows the embedding of the reference set to be fixed. 

Besides, MDE deals specifically with the errors in distance measurements such as 

registration error.

Previously, fiber embedding based on tract affinity has been applied to fiber bundle 

segmentation [8] without preserving the distance in the embedding space. The embedding 

based on MDS has been applied to fiber visualization for individual subjects [9]. However, it 

is not scalable to GiTA.

2 GIFE: group-wise isometric fiber embedding

We adopt the principle of MDS for GIFE because it preserves pairwise distances. In 

addition, we address the scalability by using only a small amount of tract distances. 

Moreover, since the inter-subject distances are often inaccurate in our problem, rather than 

solving the embedding from the inter-subject distances directly, we transform the embedding 

found using the intra-subject tract distances to fit to the geometry defined by the inter-

subject distances and the resultant embedding is robust to the errors in inter-subject 

distances.

2.1 The classical MDS

Our idea is based on the classical MDS. The basic formulation of the classical MDS can be 

written as follows [6]:
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Bn × n ≈ ZpZp
T 1

where Bn × n = − 1
2Pn × nD(2)n × nPn × n, Zp is the p-dimensional embedding of the fiber 

tracts, and it denotes the first p columns of the matrix Z, P is known as the centering matrix 

defined as Pi j = 1 − 1
n , ∀i = j and Pi j = − 1

n , ∀i ≠ j, D(2) is the input squared distance matrix.

The solution of Eq. (1) can be obtained by using the following steps:

(a)B = P − 1
2D(2) P, (b) EΛET = svd (B), (c) Zp = EpΛp

1
2 2

where Zp and Ep are the first p columns of Z and E, Λp is the top-left p × p block matrix of 

Λ.

To simplify the derivations and implementation, we make the following assumption.

Assumption 1Let− 1
2D(2) = VAVT, where V and A are the eigenvector and eigenvalue 

matrices of − 1
2D(2) . We assume Vp = PVp .In fact, we can always impose V = PV as a 

constraint in the classical MDS factorization framework. We omit this step in this work since 

we observe that this complication unnecessary as the assumption is often valid in our 

problem.

Based on this assumption, we have:

B = P − 1
2D(2) P = − 1

2D(2) = B# 3

which is the simplified Gram matrix that we adopt in the rest of this work.

2.2 The classical multidimensional extrapolating (cMDE)

In our problem, computing, storing and factorizing the massive pairwise distances between 

all fiber tracts for all pairs of subjects are very costly in general. Alternatively, we propose to 

consider one of the fiber bundles as a reference. Then, for all other bundles, we propose to 

estimate their embedding based on the precomputed embedding of the reference bundle. We 

call this problem the GIFE problem, and we develop a novel method called 

multidimensional extrapolating (MDE) to solve it. Since we follow the idea of classical 

MDS so we call our method the classical MDE, or cMDE. There are three variants of the 

MDE method: inter-set MDE, intra-set MDE and cMDE. The inter-set MDE is computed 

using only the distances of fibers from different subjects, the intra-set MDE is computed 
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using only the distances from the same subjects, and the cMDE is a combination of these 

two.

In cMDE, we want to find the embedding Yp of the target fibers such that:

Xp

Yp
Xp

T, Yp
T ≈

BX X
# , BX Y

#

BY X
# , BY Y

# = B# = − D(2) =
−DX X

(2) , −DX Y
(2)

−DY X
(2) , −DY Y

(2) 4

where the reference embedding Xp of the reference fibers and the simplified Gram matrix B# 

of the reference and target fibers are given.

Inter-set MDE: embedding with inter-set distance.—In the ideal case where the 

registration process in the GiTA is perfect, and the inter-subject distance measure DX Y or 

DY X is ideal, we can simply use the following relation to estimate Yp.

BY X
# ≈ Yp Xp

T Yp = BY X
# XpΛX X

−1 5

where X and ΛX X are the eigenvector and eigenvalue matrices of B#
X X , and this 

formulation is closely related to the Nyström approximation [10]. This method might overfit 

Y to the inter-set distances despite the errors therein.

Intra-set MDE: embedding with intra-set distance.—Since DY Y is also known, we 

can obtain their eigen-decomposition.

BY Y
# ≈ Ep

YΛY Y Ep
Y T = YpYp

T 6

The solution found by the above decomposition maybe more reliable than the one found by 

Eq. (5), since we only use the intra-subject distance measure and no mis-alignment error is 

present. However, this also does not give us Yp directly since

YpYp
T = YpRRTYp

T 7

where RRT = I p × p, meaning that the solution remains valid up to any arbitrary orthogonal 

transformation.

cMDE: Finding the optimal orthogonal transformation.—We propose to estimate 

the optimal R which transforms the solution of the intra-set MDE Y toward the solution of 

the inter-set MDE Y, such that the geometry of the embedding defined by B#
Y Y is preserved 

when we try to align the embedding of Y with the inter-set distances. And we propose the 

following model to solve it:
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Y = YpR*, R* = argmin 1
2 ∥ R − Yp

TYp ∥2 , s . t . RRT = I 8

The rationale of this model lies in that Yp
TYp is actually the least-squares solution of 

min
R

∥ YpR − Yp ∥2 without the orthogonality constraint RRT = I.

The latter formulation is more intuitive. An advantage of Eq. (8) over the latter intuitive 

formulation is that it admits a closed-form solution [11]

R* = UVT 9

where UDVT = svd (Yp
TY p) .

3 Experimental results

3.1 Randomly sampled tractograms

In this experiment, we simulate the situation of GIFE problem by subsampling a relatively 

small real optic radiation bundle reconstructed using the Human Connectome Project (HCP) 

data. This simulation allows us to quantitatively assess the distance preservability of 

different methods.

Experiment configuration.—First, we reconstruct the optic radiation fiber bundle for 

one subject from the HCP data [12, 13] using the method described in [14]. This bundle 

contains a total of 8170 fibers. Note that we used the unfiltered fiber tracts in this 

experiment, and some spurious tracts are present. We also compute the Hausdorff distance 

between all pairs of tracts in the bundle. Then, we randomly sample the bundle 10 times 

without replacement and each subsample contained 10 percent of the original bundle, and 

the sub-bundles are denoted as {T0, T2, ..., T9}. Finally, we consider T0 as the reference 

bundle and extract its intra-set distance matrix from the full distance matrix, and we extract 

the intra-set and inter-set distance matrices with reference to T0 for all other sub-bundles. 

We mainly compare our method with four different comparable methods for MDU: the 

weighted least-squares MDS (LS-MDS)1 [6], the Scaling by MAjorizing a COmplicated 

Function (SMACOF) algorithm2 [15] and the Maximum Variance Unfolding (MVU)3 [7]. 

Only the inter-subject distances with reference to T0 and the intra-subject distances are used 

in this comparison. We also compare our method with the inter-set MDE and the intra-set 

MDE. Lastly, we compute the cMDS computed with the full distance matrix for reference.

We originally computed cMDS with the full distance matrix using 11 dimensions. However, 

only 7 of them correspond to positive eigenvalues. According to the MDS theory [6], we 

should only use positive eigenvalues for cMDS so we fix the dimensionality to be 7 in all 

1gradient descent implementation
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methods. In this experiment, we perturbed the inter-set distance 

DT0, Ti
by DT0, Ti

′ = DT0, Ti
× (1 + n) and n N(0, 0.5) . Computing the full distance matrix for 

this bundle took about 11 hrs on a single CPU core, and computing the subset of distances 

required by MDE would take only about 4 hrs.

Results.

Some visual results for this simulation experiment are shown in Fig. 1. We observe that our 

method (cMDE) well approximates the point distribution of cMDS, while the other methods 

generally fail to preserve the geometrical relationship between the fiber tracts given the 

partial and imprecise information. From Fig. 2, we can see that the inter-set MDE might be 

affected by the inter-set misalignment and the the intra-set MDE may be oriented arbitrarily 

while our method optimally restores the point distribution. We are also able to evaluate our 

method quantitatively by comparing the pairwise distance in the embedding space with the 

true Hausdorff tract distance. We adopt the signed Pearson correlation coefficient as our 

distance similarity measure. Note that this measure is invariant to linear scaling which is 

acceptable in our problem. The results are summarized in Tab. 1. We observe that our 

method gives very satisfactory distance preservation in the embedding space. In addition, 

our method compares significantly favorably to other methods in terms of computational 

efficiency. The computational cost for calculating the distances are not included in this table. 

This experiment is conducted in MATLAB on Linux with Intel(R) Core(TM) i7-6820HQ 

CPU @ 2.70GHz and 32GB memory. All iterative methods terminate at convergence or a 

maximum of 100 iterations. The computational times shown are all the total times. Since the 

MDE framework is parallelizable, we put (/10) behind the times to indicate the possibility of 

further breaking down the computational time by parallelization.

3.2 Common optic radiation fiber bundle extraction

Following the GiTA framework, we apply our GIFE framework to extracting common optic 

radiation fiber bundles [14] using the HCP data for 47 subjects.

We use the raw noisy fiber tracts as the input in this experiment. For this task, we pick the 

the fibers common in most of the bundles as the common fiber based on a commonness 

measure defined based on the Euclidean distance in embedding space or Hausdorff distance 

in the fiber space. We adopt the k-d tree based KNN search to calculate the Euclidean 

distances. We use 25 dimensions for the embedding. For results, we expect the common 

bundle to capture the main anatomical characteristics of the optic radiation bundle and we 

also expect it to be highly organized to follow retinotopy [4]. The total computation time for 

calculating all pairwise tract distances was around 60056 hrs-core. We also subsample the 

fibers with a fixed sampling ratio 1/10, which reduces the computation to about 6000 hrs-

core. Note that the tract distance calculation involves k-nearest neighbor search which is 

approximately linear time complexity with k-d tree. Since we implement the original GiTA 

on a large-scale computing array with thousands of CPUs, the computation time is reduced 

to a couple of days. By employing the GIFE framework, we reduce the computation time by 

over 90% to about 500 hrs-core, which is tractable for a small-size cluster with dozens of 

CPU cores.
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We compare our cMDE method with the inter-set MDE and intra-set MDE as well as the 

original GiTA framework. The results are shown in Fig. 3. The results show that the original 

GiTA extracts the largest common bundles. However, the tracts appear to be a bit 

disorganized and this might be due to the inter-subject misalignment. We also observe that 

the GiTA + intra-set MDE framework failed to extract meaningful common bundle. Both of 

GiTA + inter-set MDE and GiTA + cMDE extract consistently highly organized bundles 

with increased organization by raising the commonness, while the bundles extracted by 

GiTA + cMDE are more anatomically complex and agreeable to the results of the original 

GiTA. This is an anticipated outcome of the better overlapped reference-target embedding of 

cMDE over the inter-set MDE. The computational time for the intra-set MDE for 1 subject 

is about 200 sec-core, and the inter-set MDE took about 0.05 sec·core, solving the optimal 

R* and computing the final cMDE mapping took about 0.008 sec·core. We also compare 

with the MDU solved by LS-MDS and SMACOF in which we fix the reference embedding 

while iteratively updating only the target embedding for each target subject. However, LS-

MDS and SMACOF generally require recalculating all the pairwise distances for the 

reference and target embeddings at each iteration, and each iteration of them took about 100 

secs·core and both methods ran about 50 iterations before convergence. The results of LS-

MDS are disorganized and sparse, and SMACOF gives a large amount of disorganized, 

hence invalid, common optic radiation fiber tracts.

4 Conclusion

In this work, we present a novel GIFE framework to achieve scalable GiTA. We also propose 

a novel method called MDE to achieve efficient and robust GIFE. The resultant method is 

highly scalable, parallelizable and robust to inter-subject misalignment. Real experiment 

shows clearly improved anatomical validity of the results of our proposed MDE method over 

other methods. This GIFE framework will be generally useful non-exclusively for common 

bundle reconstruction among all possible GiTA problems.
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Fig. 1. 
3D visualization of the results of isometric embedding for a randomly sampled visual 

pathway fiber bundle using different methods. (a) shows the original bundle.
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Fig. 2. 
MDE with intermediate results. (a) a target bundle (b) inter-set MDE (c) intra-set MDE (d) 

cMDE (e) cMDS with full distance matrix.
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Fig. 3. 
Common optic radiation bundles. The common bundles from the original GiTA, GiTA

+inter-set MDE and GiTA+cMDE generally do not contain spurious tracts.
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Table 1.

Quantitative results for distance preservation in the embedding.

cMDS LS-MDS SMACOF MVU inter-set MDE  intra-set MDE cMDE

ρ(D, DGT) 0.97 0.48 0.36 0.05 0.72 0.38 0.96

time(s) 6.38 1562 1445 2723 0.16(/10) 0.6(/10) 0.73(/10)
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