Skip to main content

Rethinking Fusion Baselines for Multi-modal Human Action Recognition

  • Conference paper
  • First Online:
Advances in Multimedia Information Processing – PCM 2018 (PCM 2018)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11166))

Included in the following conference series:

Abstract

In this paper we study fusion baselines for multi-modal action recognition. Our work explores different strategies for multiple stream fusion. First, we consider the early fusion which fuses the different modal inputs by directly stacking them along the channel dimension. Second, we analyze the late fusion scheme of fusing the scores from different modal streams. Then, the middle fusion scheme in different aggregation stages is explored. Besides, a modal transformation module is developed to adaptively exploit the complementary information from various modal data. We give comprehensive analysis of fusion schemes described above through experimental results and hope our work could benefit the community in multi-modal action recognition.

This work was supported by National Natural Science Foundation of China under contract No. 61772043 and CCF-Tencent Open Research Fund.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chéron, G., Laptev, I., Schmid, C.: P-CNN: pose-based CNN features for action recognition. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3218–3226 (2015)

    Google Scholar 

  2. Dalal, N., Triggs, B., Schmid, C.: Human detection using oriented histograms of flow and appearance. In: Proceedings of European Conference on Computer Vision, pp. 428–441 (2006)

    Chapter  Google Scholar 

  3. Donahue, J., et al.: Long-term recurrent convolutional networks for visual recognition and description. In: Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition, pp. 2625–2634 (2015)

    Google Scholar 

  4. Feichtenhofer, C., Pinz, A., Wildes, R.: Spatiotemporal residual networks for video action recognition. In: Proceedings of Advances in Neural Information Processing Systems, pp. 3468–3476 (2016)

    Google Scholar 

  5. Feichtenhofer, C., Pinz, A., Wildes, R.P.: Spatiotemporal multiplier networks for video action recognition. In: Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition, pp. 7445–7454 (2017)

    Google Scholar 

  6. Gers, F.A., Schmidhuber, J., Cummins, F.: Learning to forget: continual prediction with LSTM. Neural Comput. 12(10), 2451–2471 (2000)

    Article  Google Scholar 

  7. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  8. Ji, S., Xu, W., Yang, M., Yu, K.: 3D convolutional neural networks for human action recognition. IEEE Trans. Pattern Anal. Mach. Intell. 35(1), 221–231 (2013)

    Article  Google Scholar 

  9. Jia, Y., et al.: Caffe: convolutional architecture for fast feature embedding. In: Proceedings of ACM International Conference on Multimedia, pp. 675–678 (2014)

    Google Scholar 

  10. Kang, S.B., Uyttendaele, M., Winder, S., Szeliski, R.: High dynamic range video. ACM Trans. Graph. 22, 319–325 (2003)

    Article  Google Scholar 

  11. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Proceedings of Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  12. Laptev, I., Marszalek, M., Schmid, C., Rozenfeld, B.: Learning realistic human actions from movies. In: Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition, pp. 1–8 (2008)

    Google Scholar 

  13. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436 (2015)

    Article  Google Scholar 

  14. Liu, J., Li, Y., Song, S., Xing, J., Lan, C., Zeng, W.: Multi-modality multi-task recurrent neural network for online action detection. IEEE Trans. Circ. Syst. Video Technol. (2018)

    Google Scholar 

  15. Liu, J., Shahroudy, A., Xu, D., Wang, G.: Spatio-temporal LSTM with trust gates for 3D human action recognition. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9907, pp. 816–833. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46487-9_50

    Chapter  Google Scholar 

  16. Shahroudy, A., Liu, J., Ng, T.T., Wang, G.: NTU RGB+D: a large scale dataset for 3D human activity analysis. In: Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition, pp. 1010–1019 (2016)

    Google Scholar 

  17. Simonyan, K., Zisserman, A.: Two-stream convolutional networks for action recognition in videos. In: Proceedings of Advances in Neural Information Processing Systems, pp. 568–576 (2014)

    Google Scholar 

  18. Song, S., Lan, C., Xing, J., Zeng, W., Liu, J.: An end-to-end spatio-temporal attention model for human action recognition from skeleton data. In: AAAI, vol. 1, p. 7 (2017)

    Google Scholar 

  19. Song, S., Lan, C., Xing, J., Zeng, W., Liu, J.: Spatio-temporal attention-based LSTM networks for 3D action recognition and detection. IEEE Trans. Image Process. 27(7), 3459–3471 (2018)

    Article  MathSciNet  Google Scholar 

  20. Srivastava, N., Mansimov, E., Salakhudinov, R.: Unsupervised learning of video representations using LSTMs. In: Proceedings of International Conference on Machine Learning, pp. 843–852 (2015)

    Google Scholar 

  21. Tran, D., Bourdev, L., Fergus, R., Torresani, L., Paluri, M.: Learning spatiotemporal features with 3D convolutional networks. In: Proceedings of IEEE International Conference on Computer Vision, pp. 4489–4497 (2015)

    Google Scholar 

  22. Wang, H., Kläser, A., Schmid, C., Liu, C.L.: Action recognition by dense trajectories. In: Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition, pp. 3169–3176 (2011)

    Google Scholar 

  23. Wang, H., Schmid, C.: Action recognition with improved trajectories. In: Proceedings of IEEE International Conference on Computer Vision, pp. 3551–3558 (2013)

    Google Scholar 

  24. Wang, L., et al.: Temporal segment networks: towards good practices for deep action recognition. In: Proceedings of European Conference on Computer Vision, pp. 20–36 (2016)

    Chapter  Google Scholar 

  25. Zhang, P., Lan, C., Xing, J., Zeng, W., Xue, J., Zheng, N.: View adaptive recurrent neural networks for high performance human action recognition from skeleton data. In: Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition, pp. 2117–2126 (2017)

    Google Scholar 

  26. Zolfaghari, M., Oliveira, G.L., Sedaghat, N., Brox, T.: Chained multi-stream networks exploiting pose, motion, and appearance for action classification and detection. In: Proceedings of IEEE International Conference on Computer Vision, pp. 2923–2932 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiaying Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jiang, H., Li, Y., Song, S., Liu, J. (2018). Rethinking Fusion Baselines for Multi-modal Human Action Recognition. In: Hong, R., Cheng, WH., Yamasaki, T., Wang, M., Ngo, CW. (eds) Advances in Multimedia Information Processing – PCM 2018. PCM 2018. Lecture Notes in Computer Science(), vol 11166. Springer, Cham. https://doi.org/10.1007/978-3-030-00764-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00764-5_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00763-8

  • Online ISBN: 978-3-030-00764-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics