Skip to main content

An Efficient Complexity Reduction Scheme for CU Partitioning in Quality Scalable HEVC

  • Conference paper
  • First Online:
Advances in Multimedia Information Processing – PCM 2018 (PCM 2018)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11166))

Included in the following conference series:

  • 3074 Accesses

Abstract

The scalable extension of HEVC (known as SHVC), uses Inter-layer predictions with multiple HEVC layers in addition to the advanced coding tools of HEVC, which causes huge computational complexity. One of the main reasons that result in the SHVC encoder complexity is selecting the best coding unit (CU) depth level. This paper aims to develop a complexity reduction scheme for CU depth prediction and CU partitioning termination of Quality SHVC. In this regard, first, the CU depth correlation degree is used to predict the most probable depths. Then, a hypothesis testing for the residuals distribution of current CU is introduced to terminate the depth selection early. Experimental results demonstrate that the proposed scheme significantly reduces the enhancement layer (EL) execution time of SHVC encoder by 58.19% on average compared with unmodified SHVC encoder while maintaining the overall coding efficiency.

This work is supported by the National Natural Science Foundation of China (No. 61571071) and Nature Science Foundation Project of Chongqing (No. cstc2016jcyjA0543 and No. cstc2017jcyjXB0037).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sullivan, G.J., Ohm, J., Han, W.-J., Wiegand, T.: Overview of the high efficiency video coding (HEVC) standard. IEEE Trans. Circuits Syst. Video Technol. 22(12), 1649–1668 (2012)

    Article  Google Scholar 

  2. Yan, S., Hong, L., He, W., Wang, Q.: Group-based fast mode decision algorithm for intra prediction in HEVC. In: 2012 Eighth International Conference on Signal Image Technology and Internet Based Systems (SITIS), pp. 225–229. IEEE (2012)

    Google Scholar 

  3. Boyce, J.M., Ye, Y., Chen, J., Ramasubramonian, A.K.: Overview of SHVC: scalable extensions of the high efficiency video coding standard. IEEE Trans. Circuits Syst. Video Technol. 26(1), 20–34 (2016)

    Article  Google Scholar 

  4. Tohidypour, H.R., Pourazad, M.T., Nasiopoulos, P.: Probabilistic approach for predicting the size of coding units in the quad-tree structure of the quality and spatial scalable HEVC. IEEE Trans. Multimed. 18(2), 182–195 (2016)

    Article  Google Scholar 

  5. Wang, D., Zhu, C., Sun, Y., Dufaux, F., Huang, Y.: Efficient multi-strategy intra prediction for quality scalable high efficiency video coding. IEEE Trans. Image Process. (2017)

    Google Scholar 

  6. Tohidypour, H.R., Pourazad, M.T., Nasiopoulos, P.: Content adaptive complexity reduction scheme for quality/fidelity scalable HEVC. In: 2013 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1744–1748. IEEE (2013)

    Google Scholar 

  7. Bailleul, R., De Cock, J., Van De Walle, R.: Fast mode decision for SNR scalability in SHVC digest of technical papers. In: 2014 IEEE International Conference on Consumer Electronics (ICCE), pp. 193–194. IEEE (2014)

    Google Scholar 

  8. Tohidypour, H.R., Pourazad, M.T., Nasiopoulos, P.: An encoder complexity reduction scheme for quality/fidelity scalable HEVC. IEEE Trans. Broadcast. 62(3), 664–674 (2016)

    Article  Google Scholar 

  9. Cho, S., Kim, M.: Fast CU splitting and pruning for suboptimal CU partitioning in HEVC intra coding. IEEE Trans. Circuits Syst. Video Technol. 23(9), 1555–1564 (2013)

    Article  Google Scholar 

  10. Nan, H., Yang, E.-H.: Fast motion estimation based on confidence interval. IEEE Trans. Circuits Syst. Video Technol. 24(8), 1310–1322 (2014)

    Article  Google Scholar 

  11. Stephens, M.A.: EDF statistics for goodness of fit and some comparisons. J. Am. Stati. Assoc. 69(347), 730–737 (1974)

    Article  Google Scholar 

  12. Pan, Z., Kwong, S., Sun, M.-T., Lei, J.: Early merge mode decision based on motion estimation and hierarchical depth correlation for HEVC. IEEE Trans. Broadcast. 60(2), 405–412 (2014)

    Article  Google Scholar 

  13. SHVC Test Model:SHM-11.0 [Online]. https://hevc.hhi.fraunhofer.de/svn/svn_SHVCSoftware/tags/SHM-11.0. Accessed 10 May 2018

  14. Seregin, V., He, Y.: Common SHM test conditions and software reference configurations. Document JCTVCQ1009, pp. 1–4 (2014)

    Google Scholar 

  15. Bjøntegaard, G.: Calculation of average PSNR differences between RD-curves. In: ITU-T Q.6/SG16 VCEG, 15th Meeting, Austin, Texas, USA, April 2001

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, B., Li, Q., Song, J. (2018). An Efficient Complexity Reduction Scheme for CU Partitioning in Quality Scalable HEVC. In: Hong, R., Cheng, WH., Yamasaki, T., Wang, M., Ngo, CW. (eds) Advances in Multimedia Information Processing – PCM 2018. PCM 2018. Lecture Notes in Computer Science(), vol 11166. Springer, Cham. https://doi.org/10.1007/978-3-030-00764-5_48

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00764-5_48

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00763-8

  • Online ISBN: 978-3-030-00764-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics