Abstract
Aiming at the problem of low accuracy, high computational complexity and incomplete edge information of most image splicing localization algorithm, this paper proposes a new image splicing localization algorithm. First, the SLIC image segmentation algorithm is used to segment the image. Secondly, the noise estimation value of each super-pixel block is calculated by the FAST noise estimation algorithm. Then, weight of each image block is calculated through noise and image features. Finally, the noise value sequence is processed by clustering and statistical processing to determine the pixels of the background area and the splicing area, thus the splicing area is located. In this paper, the algorithm is tested on the color image database of Columbia, and compared with the existing image splicing localization algorithms based on block-segmentation and based on pixel. The experiment shows that the proposed algorithm can preserve the connection between image features, hold the edge of the splicing area, and effectively improve the efficiency of localization detection under the premise of ensuring the accuracy of image splicing localization.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Walia, S., Kumar, K.: Digital image forgery detection: a systematic scrutiny. Aust. J. Forensic Sci. 1, 1–39 (2018). https://doi.org/10.1080/00450618.2018.1424241
Zhang, L., Yang, Y., Wang, M.: Detecting densely distributed graph patterns for fine-grained image categorization. IEEE Trans. Image Process. 25(2), 553–565 (2016). https://doi.org/10.1109/TIP.2015.2502147
Ng, T.T., Chang, S.F., Sun, Q. (2004) Blind detection of photomontage using higher order statistics. In: Proceedings - IEEE International Symposium on Circuits and Systems, vol. 5, pp. 688–691. https://doi.org/10.1109/iscas.2004.1329901
Zhang, L., Gao, Y., Hong, R., Hu, Y., Ji, R., Dai, Q.: Probabilistic skimlets fusion for summarizing multiple consumer landmark videos. IEEE Trans. Multimed. 17(1), 40–49 (2014). https://doi.org/10.1109/TMM.2014.2370257
Agarwal, S., Chand, S.: Image forgery detection using multi scale entropy filter and local phase quantization. Int. J. Image Graph. Sig. Process. 7(10), 78–85 (2015). https://doi.org/10.5815/ijigsp.2015.10.08
Zhang, L., Hong, R., Gao, Y., Ji, R., Dai, Q., Li, X.: Image categorization by learning a propagated graphlet path. IEEE Trans. Neural Netw. Learn. Syst. 27(3), 674–685 (2017). https://doi.org/10.1109/icip.2009.5413549. https://doi.org/10.1109/tnnls.2015.2444417
Hashmi, M.F., Keskar, A.G.: Image forgery authentication and classification using hybridization of HMM and SVM classifier. Int. J. Secur. Appl. 9(4), 125–140 (2015). https://doi.org/10.14257/ijsia.2015.9.4.13
Vaishnavi, D., Subashini, T.S.: Recognizing image splicing forgeries using histogram features. In: MEC International Conference on Big Data and Smart City, pp. 1–4. IEEE, New York (2016). https://doi.org/10.1109/icbdsc.2016.7460342
Wang, B., Kong, X.: Image splicing localization based on re-demosaicing. In: Zeng, D. (ed.) Advances in Information Technology and Industry Applications. LNEE, vol. 136, pp. 725–732. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-26001-8_92
Zampoglou, M., Papadopoulos, S., Kompatsiaris, Y.: Large-scale evaluation of splicing localization algorithms for web images. Multimed. Tools Appl. 76, 1–34 (2016). https://doi.org/10.1007/s11042-016-3795-2
Bahrami, K., Kot, A.C., Li, L., et al.: Blurred image splicing localization by exposing blur type inconsistency. IEEE Trans. Inf. Forensics Secur. 10(5), 999–1009 (2015). https://doi.org/10.1109/ISCAS.2015.7168815
Immerkær, J.: Fast noise variance estimation. Comput. Vis. Image Underst. 64(2), 300–302 (1996). https://doi.org/10.1109/TIFS.2015.2394231
Lyu, S., Pan, X., Zhang, X.: Exposing region splicing forgeries with blind local noise estimation. Int. J. Comput. Vis. 110(2), 202–221 (2014). https://doi.org/10.1007/s11263-013-0688-y
Mahdian, B., Saic, S.: Using noise inconsistencies for blind image forensics. Image Vis. Comput. 27(10), 1497–1503 (2009). https://doi.org/10.1016/j.imavis.2009.02.001
Pan, X., Zhang, X., Lyu, S.: Exposing image forgery with blind noise estimation. In: Thirteenth ACM Multimedia Workshop on Multimedia and Security, pp. 15–20. ACM, New York (2011). https://doi.org/10.1145/2037252.2037256
Pan, X., Zhang, X., Lyu, S.: Exposing image splicing with inconsistent local noise variances. In: IEEE International Conference on Computational Photography, pp 1–10. IEEE, New York (2012). https://doi.org/10.1109/iccphot.2012.6215223
Achanta, R., Shaji, A., Smith, K., et al.: SLIC superpixels compared to state-of-the-art super-pixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 234(11), 2274–2282 (2012). https://doi.org/10.1109/TPAMI.2012.120
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
Chen, H., Zhao, C., Shi, Z., Zhu, F. (2018). An Image Splicing Localization Algorithm Based on SLIC and Image Features. In: Hong, R., Cheng, WH., Yamasaki, T., Wang, M., Ngo, CW. (eds) Advances in Multimedia Information Processing – PCM 2018. PCM 2018. Lecture Notes in Computer Science(), vol 11166. Springer, Cham. https://doi.org/10.1007/978-3-030-00764-5_56
Download citation
DOI: https://doi.org/10.1007/978-3-030-00764-5_56
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-00763-8
Online ISBN: 978-3-030-00764-5
eBook Packages: Computer ScienceComputer Science (R0)