Skip to main content

An Image Splicing Localization Algorithm Based on SLIC and Image Features

  • Conference paper
  • First Online:
Advances in Multimedia Information Processing – PCM 2018 (PCM 2018)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11166))

Included in the following conference series:

Abstract

Aiming at the problem of low accuracy, high computational complexity and incomplete edge information of most image splicing localization algorithm, this paper proposes a new image splicing localization algorithm. First, the SLIC image segmentation algorithm is used to segment the image. Secondly, the noise estimation value of each super-pixel block is calculated by the FAST noise estimation algorithm. Then, weight of each image block is calculated through noise and image features. Finally, the noise value sequence is processed by clustering and statistical processing to determine the pixels of the background area and the splicing area, thus the splicing area is located. In this paper, the algorithm is tested on the color image database of Columbia, and compared with the existing image splicing localization algorithms based on block-segmentation and based on pixel. The experiment shows that the proposed algorithm can preserve the connection between image features, hold the edge of the splicing area, and effectively improve the efficiency of localization detection under the premise of ensuring the accuracy of image splicing localization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Walia, S., Kumar, K.: Digital image forgery detection: a systematic scrutiny. Aust. J. Forensic Sci. 1, 1–39 (2018). https://doi.org/10.1080/00450618.2018.1424241

    Article  Google Scholar 

  2. Zhang, L., Yang, Y., Wang, M.: Detecting densely distributed graph patterns for fine-grained image categorization. IEEE Trans. Image Process. 25(2), 553–565 (2016). https://doi.org/10.1109/TIP.2015.2502147

    Article  MathSciNet  Google Scholar 

  3. Ng, T.T., Chang, S.F., Sun, Q. (2004) Blind detection of photomontage using higher order statistics. In: Proceedings - IEEE International Symposium on Circuits and Systems, vol. 5, pp. 688–691. https://doi.org/10.1109/iscas.2004.1329901

  4. Zhang, L., Gao, Y., Hong, R., Hu, Y., Ji, R., Dai, Q.: Probabilistic skimlets fusion for summarizing multiple consumer landmark videos. IEEE Trans. Multimed. 17(1), 40–49 (2014). https://doi.org/10.1109/TMM.2014.2370257

    Article  Google Scholar 

  5. Agarwal, S., Chand, S.: Image forgery detection using multi scale entropy filter and local phase quantization. Int. J. Image Graph. Sig. Process. 7(10), 78–85 (2015). https://doi.org/10.5815/ijigsp.2015.10.08

    Article  Google Scholar 

  6. Zhang, L., Hong, R., Gao, Y., Ji, R., Dai, Q., Li, X.: Image categorization by learning a propagated graphlet path. IEEE Trans. Neural Netw. Learn. Syst. 27(3), 674–685 (2017). https://doi.org/10.1109/icip.2009.5413549. https://doi.org/10.1109/tnnls.2015.2444417

    Article  MathSciNet  Google Scholar 

  7. Hashmi, M.F., Keskar, A.G.: Image forgery authentication and classification using hybridization of HMM and SVM classifier. Int. J. Secur. Appl. 9(4), 125–140 (2015). https://doi.org/10.14257/ijsia.2015.9.4.13

    Article  Google Scholar 

  8. Vaishnavi, D., Subashini, T.S.: Recognizing image splicing forgeries using histogram features. In: MEC International Conference on Big Data and Smart City, pp. 1–4. IEEE, New York (2016). https://doi.org/10.1109/icbdsc.2016.7460342

  9. Wang, B., Kong, X.: Image splicing localization based on re-demosaicing. In: Zeng, D. (ed.) Advances in Information Technology and Industry Applications. LNEE, vol. 136, pp. 725–732. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-26001-8_92

    Chapter  Google Scholar 

  10. Zampoglou, M., Papadopoulos, S., Kompatsiaris, Y.: Large-scale evaluation of splicing localization algorithms for web images. Multimed. Tools Appl. 76, 1–34 (2016). https://doi.org/10.1007/s11042-016-3795-2

    Article  Google Scholar 

  11. Bahrami, K., Kot, A.C., Li, L., et al.: Blurred image splicing localization by exposing blur type inconsistency. IEEE Trans. Inf. Forensics Secur. 10(5), 999–1009 (2015). https://doi.org/10.1109/ISCAS.2015.7168815

    Article  Google Scholar 

  12. Immerkær, J.: Fast noise variance estimation. Comput. Vis. Image Underst. 64(2), 300–302 (1996). https://doi.org/10.1109/TIFS.2015.2394231

    Article  Google Scholar 

  13. Lyu, S., Pan, X., Zhang, X.: Exposing region splicing forgeries with blind local noise estimation. Int. J. Comput. Vis. 110(2), 202–221 (2014). https://doi.org/10.1007/s11263-013-0688-y

    Article  Google Scholar 

  14. Mahdian, B., Saic, S.: Using noise inconsistencies for blind image forensics. Image Vis. Comput. 27(10), 1497–1503 (2009). https://doi.org/10.1016/j.imavis.2009.02.001

    Article  Google Scholar 

  15. Pan, X., Zhang, X., Lyu, S.: Exposing image forgery with blind noise estimation. In: Thirteenth ACM Multimedia Workshop on Multimedia and Security, pp. 15–20. ACM, New York (2011). https://doi.org/10.1145/2037252.2037256

  16. Pan, X., Zhang, X., Lyu, S.: Exposing image splicing with inconsistent local noise variances. In: IEEE International Conference on Computational Photography, pp 1–10. IEEE, New York (2012). https://doi.org/10.1109/iccphot.2012.6215223

  17. Achanta, R., Shaji, A., Smith, K., et al.: SLIC superpixels compared to state-of-the-art super-pixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 234(11), 2274–2282 (2012). https://doi.org/10.1109/TPAMI.2012.120

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haipeng Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, H., Zhao, C., Shi, Z., Zhu, F. (2018). An Image Splicing Localization Algorithm Based on SLIC and Image Features. In: Hong, R., Cheng, WH., Yamasaki, T., Wang, M., Ngo, CW. (eds) Advances in Multimedia Information Processing – PCM 2018. PCM 2018. Lecture Notes in Computer Science(), vol 11166. Springer, Cham. https://doi.org/10.1007/978-3-030-00764-5_56

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00764-5_56

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00763-8

  • Online ISBN: 978-3-030-00764-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics