Skip to main content

Cross-Modal Event Retrieval: A Dataset and a Baseline Using Deep Semantic Learning

  • Conference paper
  • First Online:
Advances in Multimedia Information Processing – PCM 2018 (PCM 2018)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11165))

Included in the following conference series:

Abstract

In this paper, we propose to learn Deep Semantic Space (DSS) for cross-modal event retrieval, which is achieved by exploiting deep learning models to extract semantic features from images and textual articles jointly. More specifically, a VGG network is used to transfer deep semantic knowledge from a large-scale image dataset to the target image dataset. Simultaneously, a fully-connected network is designed to model semantic representation from textual features (e.g., TF-IDF, LDA). Furthermore, the obtained deep semantic representations for image and text can be mapped into a high-level semantic space, in which the distance between data samples can be measured straightforwardly for cross-model event retrieval. In particular, we collect a dataset called Wiki-Flickr event dataset for cross-modal event retrieval, where the data are weakly aligned unlike image-text pairs in the existing cross-modal retrieval datasets. Extensive experiments conducted on both the Pascal Sentence dataset and our Wiki-Flickr event dataset show that our DSS outperforms the state-of-the-art approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Yang, Z., Li, Q., Lu, Z., Ma, Y., Gong, Z., Liu, W.: Dual structure constrained multimodal feature coding for social event detection from Flickr data. ACM Trans. Internet Technol. 17(2), 19 (2017)

    Article  Google Scholar 

  2. Yang, Z., Li, Q., Liu, W., Ma, Y., Cheng, M.: Dual graph regularized NMF model for social event detection from Flickr data. World Wide Web 20(5), 995–1015 (2017)

    Article  Google Scholar 

  3. Rasiwasia, N., Costa Pereira, J., Coviello, E., Doyle, G., Lanckriet, G. R., Levy, R., Vasconcelos, N.: A new approach to cross-modal multimedia retrieval. In: 18th ACM International Conference on Multimedia, pp. 251–260. ACM (2010)

    Google Scholar 

  4. Rashtchian, C., Young, P., Hodosh, M., Hockenmaier, J.: Collecting image annotations using Amazon’s Mechanical Turk. In: NAACL HLT 2010 Workshop on Creating Speech and Language Data with Amazon’s Mechanical Turk, pp. 139–147. Association for Computational Linguistics (2010)

    Google Scholar 

  5. Hwang, S.J., Grauman, K.: Reading between the lines: object localization using implicit cues from image tags. IEEE Trans. Pattern Anal. Mach. Intell. 34(6), 1145–1158 (2012)

    Article  Google Scholar 

  6. Thompson, B: Canonical correlation analysis. In: Encyclopedia of Statistics in Behavioral Science (2000)

    Google Scholar 

  7. Li, D., Dimitrova, N., Li, M., Sethi, I. K.: Multimedia content processing through cross-modal association. In: 11th ACM International Conference on Multimedia, pp. 604–611. ACM (2003)

    Google Scholar 

  8. Simonyan, K., Zisserman, A.: Very Deep Convolutional Networks for Large-Scale Image Recognition (2014). arXiv preprint arXiv:1409.1556

  9. Bronstein, M. M., Bronstein, A. M., Michel, F., Paragios, N.: Data fusion through cross-modality metric learning using similarity-sensitive hashing. In: Computer Vision and Pattern Recognition, pp. 3594–3601 (2010)

    Google Scholar 

  10. Song, J., Yang, Y., Yang, Y., Huang, Z., Shen, H.T.: Inter-media hashing for large-scale retrieval from heterogeneous data sources. In: 2013 ACM SIGMOD International Conference on Management of Data, pp. 785–796. ACM (2013)

    Google Scholar 

  11. Bai, B., Weston, J., Grangier, D., Collobert, R., Sadamasa, K., Qi, Y., Weinberger, K.: Learning to rank with (a lot of) word features. Inf. Retr 13(3), 291–314 (2010)

    Article  Google Scholar 

  12. Grangier, D., Bengio, S.: A discriminative kernel-based approach to rank images from text queries. IEEE Trans. Pattern Anal. Mach. Intell. 30(8), 1371–1384 (2008)

    Article  Google Scholar 

  13. Srivastava, N., Salakhutdinov, R.: Multimodal learning with deep boltzmann machines. Adv. Neural Inf. Process. Syst. 5, 2222–2230 (2012)

    MATH  Google Scholar 

  14. Wang, C., Yang, H., Meinel, C.: Deep semantic mapping for cross-modal retrieval. In: Tools with Artificial Intelligence, pp. 234–241. IEEE (2015)

    Google Scholar 

  15. Wei, Y., Zhao, Y., Lu, C., Wei, S., Liu, L., Zhu, Z., Yan, S.: Cross-modal retrieval with cnn visual features: A new baseline. IEEE Trans. Cybern. 47(2), 449–460 (2017)

    Google Scholar 

  16. Zhai, X., Peng, Y., Xiao, J.: Learning cross-media joint representation with sparse and semisupervised regularization. IEEE Trans. Circuits Syst. Video Technol. 24(6), 965–978 (2014)

    Article  Google Scholar 

  17. Kang, C., Xiang, S., Liao, S., Xu, C., Pan, C.: Learning consistent feature representation for cross-modal multimedia retrieval. IEEE Trans. Multimedia 17(3), 370–381 (2015)

    Article  Google Scholar 

  18. Srivastava, N., Salakhutdinov, R.: Learning representations for multimodal data with deep belief nets. In: International Conference on Machine Learning Workshop, vol. 79 (2012)

    Google Scholar 

  19. Feng, F., Wang, X., Li, R.: Cross-modal retrieval with correspondence autoencoder. In: 22nd ACM International Conference on Multimedia, pp. 7–16. ACM (2014)

    Google Scholar 

  20. Ngiam, J., Khosla, A., Kim, M., Nam, J., Lee, H., Ng, A.Y.: Multimodal deep learning. In: 28th International Conference on Machine Learning, pp. 689–696 (2011)

    Google Scholar 

  21. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  22. Krizhevsky, A.: One Weird Trick for Parallelizing Convolutional Neural Networks (2014). arXiv preprint arXiv:1404.5997

  23. Iandola, F.N., Han, S., Moskewicz, M.W., Ashraf, K., Dally, W.J., Keutzer, K.: SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5 MB model size (2016). arXiv preprint arXiv:1602.07360

Download references

Acknowledgments

The authors would like to thank Zehang Lin and Feitao Huang for data collection. This work is supported by the National Natural Science Foundation of China (No. 61703109, No. 91748107, No. U1611461), the Guangdong Innovative Research Team Program (No. 2014ZT05G157), Science and Technology Program of Guangdong Province, China (No. 2016A010101012), and CAS Key Lab of Network Data Science and Technology, Institute of Computing Technology, Chinese Academy of Sciences, 100190, Beijing, China (No. CASNDST201703), and an internal grant from City University of Hong Kong (Project No. 9610367).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhenguo Yang or Wenyin Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Situ, R., Yang, Z., Lv, J., Li, Q., Liu, W. (2018). Cross-Modal Event Retrieval: A Dataset and a Baseline Using Deep Semantic Learning. In: Hong, R., Cheng, WH., Yamasaki, T., Wang, M., Ngo, CW. (eds) Advances in Multimedia Information Processing – PCM 2018. PCM 2018. Lecture Notes in Computer Science(), vol 11165. Springer, Cham. https://doi.org/10.1007/978-3-030-00767-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00767-6_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00766-9

  • Online ISBN: 978-3-030-00767-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics