Skip to main content

Image Synthesis with Aesthetics-Aware Generative Adversarial Network

  • Conference paper
  • First Online:
Advances in Multimedia Information Processing – PCM 2018 (PCM 2018)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11165))

Included in the following conference series:

Abstract

With the advance of Generative Adversarial Networks (GANs), image generation has achieved rapid development. Nevertheless, the synthetic images produced by the existing GANs are still not visually plausible in terms of semantics and aesthetics. To address this issue, we propose a novel GAN model that is both aware of visual aesthetics and content semantics. Specifically, we add two types of loss functions. The first one is the aesthetics loss function, which tries to maximize the visual aesthetics of an image. The second one is the visual content loss function, which minimizes the similarity between the generated images and real images in terms of high-level visual contents. In experiments, we validate our method on two standard benchmark datasets. Qualitative and quantitative results demonstrate the effectiveness of the two loss functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein GAN. arXiv preprint arXiv:1701.07875 (2017)

  2. Chen, X., Duan, Y., Houthooft, R., Schulman, J., Sutskever, I., Abbeel, P.: InfoGAN: interpretable representation learning by information maximizing generative adversarial nets. In: NIPS (2016)

    Google Scholar 

  3. Chopra, S., Hadsell, R., LeCun, Y.: Learning a similarity metric discriminatively, with application to face verification. In: CVPR. IEEE (2005)

    Google Scholar 

  4. Datta, R., Joshi, D., Li, J., Wang, J.Z.: Studying aesthetics in photographic images using a computational approach. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3953, pp. 288–301. Springer, Heidelberg (2006). https://doi.org/10.1007/11744078_23

    Chapter  Google Scholar 

  5. Datta, R., Wang, J.Z.: ACQUINE: aesthetic quality inference engine-real-time automatic rating of photo aesthetics. In: ICMR. ACM (2010)

    Google Scholar 

  6. Deng, Y., Loy, C.C., Tang, X.: Image aesthetic assessment: an experimental survey. IEEE Signal Process. Mag. 34(4), 80–106 (2017)

    Article  Google Scholar 

  7. Goodfellow, I., et al.: Generative adversarial nets. In: NIPS (2014)

    Google Scholar 

  8. Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein GANs. In: NIPS (2017)

    Google Scholar 

  9. Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Klambauer, G., Hochreiter, S.: GANs trained by a two time-scale update rule converge to a nash equilibrium. arXiv preprint arXiv:1706.08500 (2017)

  10. Hong, R., Hu, Z., Wang, R., Wang, M., Tao, D.: Multi-view object retrieval via multi-scale topic models. IEEE Trans. Image Process. 25, 5814 (2016)

    Article  MathSciNet  Google Scholar 

  11. Hong, R., Zhang, L., Tao, D.: Unified photo enhancement by discovering aesthetic communities from flickr. IEEE Trans. Image Process. 25, 1124 (2016)

    Article  MathSciNet  Google Scholar 

  12. Hong, R., Zhang, L., Zhang, C., Zimmermann, R.: Flickr circles: aesthetic tendency discovery by multi-view regularized topic modeling. IEEE Trans. Multimed. 18, 1555 (2016)

    Article  Google Scholar 

  13. Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-resolution. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 694–711. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_43

    Chapter  Google Scholar 

  14. Joshi, D., et al.: Aesthetics and emotions in images. IEEE Signal Process. Mag. 28, 94 (2011)

    Article  Google Scholar 

  15. Ke, Y., Tang, X., Jing, F.: The design of high-level features for photo quality assessment. In: CVPR. IEEE (2006)

    Google Scholar 

  16. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  17. Kong, S., Shen, X., Lin, Z., Mech, R., Fowlkes, C.: Photo aesthetics ranking network with attributes and content adaptation. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 662–679. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_40

    Chapter  Google Scholar 

  18. Krizhevsky, A., Hinton, G.: Learning multiple layers of features from tiny images. University of Toronto (2009)

    Google Scholar 

  19. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: NIPS (2012)

    Google Scholar 

  20. LeCun, Y.: The MNIST database of handwritten digits (1998). http://yann.lecun.com/exdb/mnist/

  21. Ledig, C., et al.: Photo-realistic single image super-resolution using a generative adversarial network. arXiv preprint (2016)

    Google Scholar 

  22. Lu, X., Lin, Z., Jin, H., Yang, J., Wang, J.Z.: Rapid: rating pictorial aesthetics using deep learning. In: MM. ACM (2014)

    Google Scholar 

  23. Luo, Y., Tang, X.: Photo and video quality evaluation: focusing on the subject. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008. LNCS, vol. 5304, pp. 386–399. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88690-7_29

    Chapter  Google Scholar 

  24. Mirza, M., Osindero, S.: Conditional generative adversarial nets. arXiv preprint arXiv:1411.1784 (2014)

  25. Murray, N., Marchesotti, L., Perronnin, F.: AVA: a large-scale database for aesthetic visual analysis. In: CVPR. IEEE (2012)

    Google Scholar 

  26. Nishiyama, M., Okabe, T., Sato, I., Sato, Y.: Aesthetic quality classification of photographs based on color harmony. In: CVPR. IEEE (2011)

    Google Scholar 

  27. Odena, A., Olah, C., Shlens, J.: Conditional image synthesis with auxiliary classifier GANs. arXiv preprint arXiv:1610.09585 (2016)

  28. Qi, G.J.: Loss-sensitive generative adversarial networks on lipschitz densities. arXiv preprint arXiv:1701.06264 (2017)

  29. Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434 (2015)

  30. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  31. Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., Chen, X.: Improved techniques for training GANs. In: NIPS (2016)

    Google Scholar 

  32. Talebi, H., Milanfar, P.: NIMA: neural image assessment. IEEE Trans. Image Process. 27, 3998 (2018)

    Article  MathSciNet  Google Scholar 

  33. Tan, W.R., Chan, C.S., Aguirre, H., Tanaka, K.: ArtGAN: artwork synthesis with conditional categorial GANs. arXiv preprint arXiv:1702.03410 (2017)

  34. Tian, X., Dong, Z., Yang, K., Mei, T.: Query-dependent aesthetic model with deep learning for photo quality assessment. IEEE Trans. Multimed. 17, 2035 (2015)

    Article  Google Scholar 

  35. Tong, H., Li, M., Zhang, H.-J., He, J., Zhang, C.: Classification of digital photos taken by photographers or home users. In: Aizawa, K., Nakamura, Y., Satoh, S. (eds.) PCM 2004. LNCS, vol. 3331, pp. 198–205. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30541-5_25

    Chapter  Google Scholar 

  36. Welinder, P., et al.: Caltech-UCSD birds 200. California Institute of Technology (2010)

    Google Scholar 

  37. Yubin Deng, C.C.L., Tang, X.: Aesthetic-driven image enhancement by adversarial learning. arXiv preprint arXiv: 1707.05251 (2017)

Download references

Acknowledgments

This work was supported in part by the National Natural Science Foundation of China (NSFC) under grants 61632007, 61502139, 61772171, and 61702156, in part by Natural Science Foundation of Anhui Province under grants 1608085MF128 and 1808085QF188 and in part by Anhui Higher Education Natural Science Research Key Project under grants KJ2018A0545.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shijie Hao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, R., Liu, X., Guo, Y., Hao, S. (2018). Image Synthesis with Aesthetics-Aware Generative Adversarial Network. In: Hong, R., Cheng, WH., Yamasaki, T., Wang, M., Ngo, CW. (eds) Advances in Multimedia Information Processing – PCM 2018. PCM 2018. Lecture Notes in Computer Science(), vol 11165. Springer, Cham. https://doi.org/10.1007/978-3-030-00767-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00767-6_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00766-9

  • Online ISBN: 978-3-030-00767-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics