Skip to main content

Simultaneous Occlusion Handling and Optical Flow Estimation

  • Conference paper
  • First Online:
Advances in Multimedia Information Processing – PCM 2018 (PCM 2018)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11165))

Included in the following conference series:

  • 2525 Accesses

Abstract

Occlusion handling and optical flow estimation is a chicken-and-egg problem. In this paper, we propose our method which can handle occlusion and estimate optical flow simultaneously. First of all, we use the backward interpolation strategy to gain the warped image, then we obtain the occlusion relationship by comparing the pixels before the movement. After that we use the occlusion relation to correct the warped image and get the occlusion coefficient. Later, using the occlusion coefficient to modify the energy function. Finally, the corrected energy function and warped image are used to estimate the final optical flow results. We evaluate our method on some popular datasets such as Flying Chairs and MPI-Sintel. Experimental results demonstrate that the proposed method improves the accuracy of current optical flow estimation methods significantly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Süsstrunk, S.: Slic superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Patt. Anal. Mach. Intell. 34(11), 2274–2282 (2012)

    Article  Google Scholar 

  2. Bailer, C., Taetz, B., Stricker, D.: Flow fields: dense correspondence fields for highly accurate large displacement optical flow estimation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4015–4023 (2015)

    Google Scholar 

  3. Bergen, J.R., Anandan, P., Hanna, K.J., Hingorani, R.: Hierarchical model-based motion estimation. In: Sandini, G. (ed.) ECCV 1992. LNCS, vol. 588, pp. 237–252. Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-55426-2_27

    Chapter  Google Scholar 

  4. Brox, T., Bruhn, A., Papenberg, N., Weickert, J.: High accuracy optical flow estimation based on a theory for warping. In: Pajdla, T., Matas, J. (eds.) ECCV 2004. LNCS, vol. 3024, pp. 25–36. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24673-2_3

    Chapter  Google Scholar 

  5. Brox, T., Malik, J.: Large displacement optical flow: descriptor matching in variational motion estimation. IEEE Trans. Patt. Anal. Mach. Intell. 33(3), 500–513 (2011)

    Article  Google Scholar 

  6. Butler, D.J., Wulff, J., Stanley, G.B., Black, M.J.: A naturalistic open source movie for optical flow evaluation. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7577, pp. 611–625. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33783-3_44

    Chapter  Google Scholar 

  7. Dosovitskiy, A., et al.: FlowNet: learning optical flow with convolutional networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2758–2766 (2015)

    Google Scholar 

  8. Lucas, B.D., Kanade, T., et al.: An iterative image registration technique with an application to stereo vision (1981)

    Google Scholar 

  9. Monzón, N., Salgado, A., Sánchez, J.: Regularization strategies for discontinuity-preserving optical flow methods. IEEE Trans. Image Process. 25(4), 1580–1591 (2016)

    Article  MathSciNet  Google Scholar 

  10. Ranjan, A., Black, M.J.: Optical flow estimation using a spatial pyramid network. arXiv preprint arXiv:1611.00850 (2016)

  11. Sun, D., Roth, S., Black, M.J.: A quantitative analysis of current practices in optical flow estimation and the principles behind them. Int. J. Comput. Vis. 106(2), 115–137 (2014)

    Article  Google Scholar 

  12. Thewlis, J., Zheng, S., Torr, P.H., Vedaldi, A.: Fully-trainable deep matching. arXiv preprint arXiv:1609.03532 (2016)

  13. Weinzaepfel, P., Revaud, J., Harchaoui, Z., Schmid, C.: DeepFlow: large displacement optical flow with deep matching. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1385–1392 (2013)

    Google Scholar 

  14. Wulff, J., Black, M.J.: Efficient sparse-to-dense optical flow estimation using a learned basis and layers. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 120–130 (2015)

    Google Scholar 

  15. Zbontar, J., LeCun, Y.: Computing the stereo matching cost with a convolutional neural network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1592–1599 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zengfu Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, S., Wang, Z. (2018). Simultaneous Occlusion Handling and Optical Flow Estimation. In: Hong, R., Cheng, WH., Yamasaki, T., Wang, M., Ngo, CW. (eds) Advances in Multimedia Information Processing – PCM 2018. PCM 2018. Lecture Notes in Computer Science(), vol 11165. Springer, Cham. https://doi.org/10.1007/978-3-030-00767-6_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00767-6_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00766-9

  • Online ISBN: 978-3-030-00767-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics