Skip to main content

Image Denoising Based on Non-parametric ADMM Algorithm

  • Conference paper
  • First Online:
Advances in Multimedia Information Processing – PCM 2018 (PCM 2018)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11165))

Included in the following conference series:

  • 2506 Accesses

Abstract

Image denoising is one of the most important tasks in image processing. In this paper, we propose a new method called Non-ParaMetric Alternating Direction Method of Multiplier (ADMM) algorithm (NPM-ADMM). We utilize the standard ADMM algorithm to solve the noisy image model and update the parameters via back propagation by minimizing the loss function. In contrast to the previous methods which are required to set the parameters carefully to approach better results, the proposed method can automatically learn the related parameters without the need of manually specifying. Furthermore, the filter coefficients and the nonlinear function in the regularization term are also learned together with the parameters, rather than fixed. Experiments on image denoising demonstrate our superior results with fast convergence speed and high restoration quality.

This work was supported by National Natural Science Foundation of China (NSFC) under Grant 61702078, and by the Fundamental Research Funds for the Central Universities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barbu, A.: Training an active random field for real-time image denoising. IEEE Trans. Image Process. (TIP) 18(11), 2451–2462 (2009)

    Article  MathSciNet  Google Scholar 

  2. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3(1), 1–122 (2011)

    Article  Google Scholar 

  3. Boyle, R., Thomas, R.: Computer Vision: A First Course. Blackwell Scientific Publications (1988)

    Google Scholar 

  4. Bredies, K., Kunisch, K., Pock, T.: Total generalized variation. SIAM J. Imag. Sci. 3(3), 492–526 (2010)

    Article  MathSciNet  Google Scholar 

  5. Chan, S., Wang, X., Elgendy, O.: Plug-and-play admm for image restoration: fixed-point convergence and applications. Proc. IEEE Trans. Comput. Imaging 3(1), 84–98 (2016)

    Article  MathSciNet  Google Scholar 

  6. Chen, Y., Yu, W., Pock, T.: On learning optimized reaction diffusion processes for effective image restoration. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5261–5269 (2015)

    Google Scholar 

  7. Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Image denoising by sparse 3-d transform-domain collaborative filtering. IEEE Trans. Image Process. (TIP) 16(8), 2080–2095 (2007)

    Article  MathSciNet  Google Scholar 

  8. Elad, M., Matalon, B., Zibulevsky, M.: Image denoising with shrinkage and redundant repersentations. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1924–1931 (2006)

    Google Scholar 

  9. Gao, Q., Roth, S.: How well do filter-based mrfs model natural images? In: Proceedings of German Association for Pattern Recognition (DAGM), pp. 62–72 (2012)

    Google Scholar 

  10. Jia, Y., Darrell, T.: Heavy-tailed sistances for gradient based image descriptors. In: Proceedings of Advances in Neural Information Processing Systems (NIPS), pp. 397–405 (2011)

    Google Scholar 

  11. Kim, Y., Jung, H., Min, D., Sohn, K.: Deeply aggregated alternating minimization for image restoration. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 284–292 (2017)

    Google Scholar 

  12. Krishnan, D., Fergus, R.: Fast image deconvolution using hyper-laplacian priors. In: Proceedings of Advances in Neural Information Processing Systems (NIPS), pp. 1033–1041 (2009)

    Google Scholar 

  13. Lin, Z., Chen, M., Ma, Y.: The augmented lagrange multiplier method for exact recovery of corrupted low-rank matrices. arXiv preprint arXiv:1009.5055 (2010)

  14. Liu, D., Nocedal, J.: On the limited memory bfgs method for large scale optimization. Proc. Math. Program. 45(1–3), 503–528 (1989)

    Article  MathSciNet  Google Scholar 

  15. Martin, D., Black, M.J.: Fields of experts. Int. J. Comput. Vis. (IJCV) 82(2), 205–229 (2009)

    Article  Google Scholar 

  16. Meinhardt, T., Moeller, M., Hazirbas, C., Cremers, D.: Learning proximal operators: using denoising networks for regularizing inverse imaging problems. In: Proceedings of IEEE International Conference on Computer Vision (ICCV), pp. 1781–1790 (2017)

    Google Scholar 

  17. Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. Proc. IEEE Trans. Pattern Anal. Mach. Intell. 12(7), 629–639 (1990)

    Article  Google Scholar 

  18. Poor, H.V.: An Introduction to Signal Detection and Estimation, 2nd edn. Springer, Heidelberg (1998). https://doi.org/10.1007/978-1-4757-2341-0

    Book  Google Scholar 

  19. Portilla, J., Strela, V., Wainwright, M., Simoncelli, E.: Image denoising using scale mixtures of gaussians in the wavelet domain. IEEE Trans. Image Process. (TIP) 12(11), 1338–1351 (2003)

    Article  MathSciNet  Google Scholar 

  20. Schmidt, M.: minfunc (2013). http://mloss.org/software/view/529.html

  21. Schmidt, U., Roth, S.: Shrinkage fields for effective image restoration. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3791–3799 (2015)

    Google Scholar 

  22. Taylor, G., Burmeister, R., Xu, Z., Singh, B., Patel, A., Goldstein, T.: Training neural networks without gradients: a scalable admm approach. In: Proceedings of International Conference on International Conference on Machine Learning, pp. 2722–2731 (2016)

    Google Scholar 

  23. Vert, J.P., Tsuda, K., Scholkopf, B.: A primer on kernel methods. In: Proceedings of Kernel Methods in Computational, pp. 35–70 (2004)

    Google Scholar 

  24. Wang, H., Banerjee, A., Luo, Z.: Parallel direction method of multipliers. In: Proceedings of Advances in Neural Information Processing Systems (NIPS), pp. 181–189 (2014)

    Google Scholar 

  25. Wang, Y., Li, K., Yang, J., Ye, X.: Intrinsic decomposition from a single RGB-D image with sparse and non-local priors. In: Proceedings of IEEE International Conference on Multimedia & Expo (ICME), pp. 1201–1206 (2017)

    Google Scholar 

  26. Wang, Y., Yang, J., Yin, W., Zhang, Y.: A ner alternating minimization algorithm for total variation image reconstruction. SIAM J. Imag. Sci. 1(3), 248–272 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinchen Ye .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ye, X., Zhang, M., Yan, Q., Fan, X., Luo, Z. (2018). Image Denoising Based on Non-parametric ADMM Algorithm. In: Hong, R., Cheng, WH., Yamasaki, T., Wang, M., Ngo, CW. (eds) Advances in Multimedia Information Processing – PCM 2018. PCM 2018. Lecture Notes in Computer Science(), vol 11165. Springer, Cham. https://doi.org/10.1007/978-3-030-00767-6_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00767-6_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00766-9

  • Online ISBN: 978-3-030-00767-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics