Skip to main content

Contextual Attention Model for Social Recommendation

  • Conference paper
  • First Online:
Advances in Multimedia Information Processing – PCM 2018 (PCM 2018)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11165))

Included in the following conference series:

Abstract

Recently, with the emergence of a large number of social platforms, more and more works have been explored for social recommendation. On a social platform, social scientists converged that there exists social influence among users. Thus, accurately modeling the social influence could alleviate the data sparsity issue in Collaborative Filtering (CF). Most of the methods simply define the social influence with the normalized constant weights. However, this is not accuracy enough, which requires more reliable modeling. Besides, many studies have adopted neural network with CF in various recommendation tasks due to the effective ability of neural network for representation. In this paper, we attempt to apply attention mechanism based neural network structure for social recommendation. Specifically, social attention can weigh the contribution of social influence in the form of scores from each neighbor, and then generates each user’s social context. Finally, extensive experimental results confirm the feasibility and effectiveness of our proposed model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Su, X., Khoshgoftaar, T.M.: A survey of collaborative filtering techniques. Adv. Artif. Intell. 2009(4), 2 (2009). https://doi.org/10.1155/2009/421425

    Article  Google Scholar 

  2. Anagnostopoulos, A., Kumar, R., Mahdian, M.: Influence and correlation in social networks. In: SIGKDD, pp. 7–15. ACM, New York (2008). https://doi.org/10.1145/1401890.1401897

  3. Jamali, M., Ester, M.: A matrix factorization technique with trust propagation for recommendation in social networks. In: RecSys, pp. 135–142. ACM, New York (2010). https://doi.org/10.1145/1864708.1864736

  4. Ma, H., King, I., Lyu, M.R.: Learning to Recommend with Social Trust Ensemble. In: SIGIR, pp. 203–210. ACM, New York (2009). https://doi.org/10.1145/1571941.1571978

  5. Ma, H., Zhou, D., Liu, C., Lyu, M.R., King, I.: Recommender systems with social regularization. In: WSDM, pp. 287–296. ACM, New York (2011). https://doi.org/10.1145/1935826.1935877

  6. Sedhain, S., Menon, A.K., Sanner, S., Xie, L.: Autorec: autoencoders meet collaborative filtering. In: WWW, pp. 111–112. ACM, New York (2015). https://doi.org/10.1145/2740908.2742726

  7. He, X., Liao, L., Zhang, H., Nie, L., Hu, X., Chua, T.-S.: Neural collaborative filtering. In: WWW, pp. 173–182, Perth, Australia (2017). https://doi.org/10.1145/3038912.3052569

  8. Cheng, H.-T., Koc, L., Harmsen, J., et al.: Wide & deep learning for recommender systems. In: Proceedings of the 1st Workshop on Deep Learning for Recommender Systems, pp. 7–10. ACM, New York (2016). https://doi.org/10.1145/2988450.2988454

  9. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv:1409.0473 (2014)

  10. Xu, K., et al.: Show, attend and tell: Neural image caption generation with visual attention. In: ICML, pp. 2048–2057. JMLR.org (2015)

    Google Scholar 

  11. Yang, Z., Yang, D., Dyer, C., He, X., Smola, A., Hovy, E.: Hierarchical attention networks for document classification. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp. 1480–1489 (2016)

    Google Scholar 

  12. Mnih, A., Salakhutdinov, R.: Probabilistic matrix factorization. In: NIPS, pp. 1257–1264. Curran Associates Inc., New York (2007)

    Google Scholar 

  13. Rendle, S., Freudenthaler, C., Gantner, Z., Schmidt-Thieme, L.: BPR: Bayesian personalized ranking from implicit feedback. In: UAI, pp. 452–461. AUAI Press Arlington, Virginia (2009)

    Google Scholar 

  14. Pan, R., et al.: One-class collaborative filtering. In: ICDM, pp. 502–511. IEEE, New York (2008). https://doi.org/10.1109/ICDM.2008.16

  15. Adomavicius, G., Tuzhilin, A.: Toward the next gen- eration of recommender systems: a survey of the state-of-the-art and possible extensions. TKDE 17(6), 734–749 (2005). https://doi.org/10.1109/TKDE.2005.99

    Article  Google Scholar 

  16. Ma, H., Yang, H., Lyu, M.R., King, I.: SoRec: social recommendation using probabilistic matrix factorization. In: CIKM, pp. 931–940. ACM, New York (2008). https://doi.org/10.1145/1458082.1458205

  17. Wu, L., et al.: Modeling the evolution of users preferences and social links in social networking services. TKDE 29(6), 1240–1253 (2017). https://doi.org/10.1109/TKDE.2017.2663422

    Article  Google Scholar 

  18. Deng, S., Huang, L., Xu, G., Wu, X., Wu, Z.: On deep learning for trust-aware recommendations in social networks. TNNLSS 28(5), 1164–1177 (2017). https://doi.org/10.1109/TNNLS.2016.2514368

    Article  Google Scholar 

  19. Li, Z., Tang, J.: Weakly Supervised deep matrix factorization for social image understanding. IEEE Trans. Image Process. 26(1), 276–288 (2017). https://doi.org/10.1109/TIP.2016.2624140

    Article  MathSciNet  Google Scholar 

  20. Zhang, S., Yao, L., Sun, A.: Deep learning based recommender system: a survey and new perspectives. arXiv:1707.07435 (2017)

  21. Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., Manzagol, P.-A.: Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion. JMLR 11(3), 3371–3408 (2010)

    MathSciNet  MATH  Google Scholar 

  22. Wu, Y., DuBois, C., Zheng, A.X., Ester, M.: Collaborative denoising autoencoders for top-n recommender systems. In: WSDM, pp. 153–162. ACM, New York (2016). https://doi.org/10.1145/2835776.2835837

  23. Wang, H., Wang, N., Yeung, D.-Y.: Collaborative deep learning for recommender systems. In: SIGKDD, pp. 1235–1244. ACM, New York (2015). https://doi.org/10.1145/2783258.2783273

  24. Sun, P., Wu, L., Wang, M.: Attentive recurrent social recommendation. In: SIGIR, pp. 185–194. ACM, New York (2018). https://doi.org/10.1145/3209978.3210023

  25. Pei, W., Yang, J., Sun, Z., Zhang, J., Bozzon, A., Tax, D.M.J.: Interacting attention-gated recurrent networks for recommendation. In: CIKM, pp. 1459–1468. ACM, New York (2017). https://doi.org/10.1145/3132847.3133005

  26. Chen, J., Zhang, H., He, X., Nie, L., Liu, W., Chua, T.-S.: Attentive collaborative filtering: multimedia recommendation with item-and component-level attention. In: SIGIR, pp. 335–344. ACM, New York (2017). https://doi.org/10.1145/3077136.3080797

  27. Seo, S., Huang, J., Yang, H., Liu, Y.: Interpretable convolutional neural networks with dual local and global attention for review rating prediction. In: RecSys, pp. 297–305. ACM, New York (2017). https://doi.org/10.1145/3109859.3109890

  28. Chang, S., Han, W., Tang, J., Qi, G.-J., Aggarwal, C.C., Huang, T.S.: Heterogeneous network embedding via deep architectures. In: SIGKDD, pp. 119–128. ACM, New York (2015). https://doi.org/10.1145/2783258.2783296

  29. Wang, D., Cui, P., Zhu, W.: Structural deep network embedding. In: SIGKDD, pp. 1225–1234. ACM, New York (2016). https://doi.org/10.1145/2939672.2939753

  30. Srivastava, N., Hinton, G.E., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. JMLR 15(1), 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the National Key Research and Development Program of China (Grant No. 2017YFC0820604), the National Natural Science Foundation of China (Grant No. 61602147, No. 61632007), the Open Project Program of the National Laboratory of Pattern Recognition (NLPR Grant No. 201700017), and the Fundamental Research Funds for the Central Universities (Grant No. JZ2018HGTB0230).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Le Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bao, H., Wu, L., Sun, P. (2018). Contextual Attention Model for Social Recommendation. In: Hong, R., Cheng, WH., Yamasaki, T., Wang, M., Ngo, CW. (eds) Advances in Multimedia Information Processing – PCM 2018. PCM 2018. Lecture Notes in Computer Science(), vol 11165. Springer, Cham. https://doi.org/10.1007/978-3-030-00767-6_58

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00767-6_58

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00766-9

  • Online ISBN: 978-3-030-00767-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics