Skip to main content

Image-into-Image Steganography Using Deep Convolutional Network

  • Conference paper
  • First Online:
Advances in Multimedia Information Processing – PCM 2018 (PCM 2018)

Abstract

Raising payload capacity in image steganography without losing too much safety is a challenging task. This paper combines recent deep convolutional neural network methods with image-into-image steganography. We show that with the proposed method, the capacity can go up to 23.57 bpp (bits per pixel) by changing only 0.76% of the cover image. We applied several traditional steganography analysis algorithms and found out that the proposed method is quite robust.

The source code is available at: https://github.com/adamcavendish/Deep-Image-Steganography.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Almohammad, A., Hierons, R.M., Ghinea, G.: High capacity steganographic method based upon JPEG. In: The Third International Conference on Availability, Reliability and Security (2008)

    Google Scholar 

  2. Baluja, S.: Hiding Images in Plain Sight: Deep Steganograph, pp. 2069–2079. Curran Associates, Inc. (2017). http://papers.nips.cc/paper/6802-hiding-images-in-plain-sight-deep-steganography.pdf

  3. Boehm, B.: StegExpose - A Tool for Detecting LSB Steganography. arXiv e-prints (2014). arXiv:1410.6656

  4. Chang, C.C., Chen, T.S., Chung, L.Z.: A steganographic method based upon JPEG and quantization table modification. Inf. Sci. 141(1–2), 123–138 (2002)

    Article  Google Scholar 

  5. Chollet, F.: Xception: Deep Learning with Depthwise Separable Convolutions. arXiv e-prints (2016). arXiv:1610.02357

  6. Clevert, D.A., Unterthiner, T., Hochreiter, S.: Fast and Accurate Deep Network Learning by Exponential Linear Units (ELUs). arXiv e-prints (2015). arXiv:1511.07289

  7. He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition (2016)

    Google Scholar 

  8. Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. arXiv e-prints (2015). arXiv:1502.03167

  9. Kawaguchi, E., Eason, R.: Principle and applications of BPCS-Steganography. In: Proceedings of SPIE, Multimedia Systems and Applications, vol. 3528, p. 464 (1998)

    Google Scholar 

  10. Kingma, D., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv e-prints (2014). arXiv:1412.6980

  11. Mielikainen, J.: LSB matching revisited. IEEE Signal Process. Lett. 13(5), 285–287 (2006)

    Article  Google Scholar 

  12. Pevný, T., Filler, T., Bas, P.: Using high-dimensional image models to perform highly undetectable steganography. In: Böhme, R., Fong, P.W.L., Safavi-Naini, R. (eds.) IH 2010. LNCS, vol. 6387, pp. 161–177. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16435-4_13

    Chapter  Google Scholar 

  13. Sedighi, V., Fridrich, J.: Histogram layer, moving convolutional neural networks towards feature-based steganalysis. Electron. Imaging 2017(7), 50–55 (2017)

    Article  Google Scholar 

  14. Sharifzadeh, M., Agarwal, C., Aloraini, M., Schonfeld, D.: Convolutional neural network steganalysis’s application to steganography. arXiv:1711.02581 [cs], November 2017

  15. Shi, H., Dong, J., Wang, W., Qian, Y., Zhang, X.: SSGAN: secure steganography based on generative adversarial networks. arXiv:1707.01613 [cs], July 2017

  16. Srivastava, R.K., Greff, K., Schmidhuber, J.: Highway Networks. arXiv e-prints (2015). arXiv:1505.00387

  17. Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A.: Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning. arXiv e-prints (2016). arXiv:1602.07261

  18. Szegedy, C., et al.: Going Deeper with Convolutions. arXiv e-prints (2014). arXiv:1409.4842

  19. Volkhonskiy, D., Nazarov, I., Borisenko, B., Burnaev, E.: Steganographic generative adversarial networks. arXiv:1703.05502 [cs, stat], March 2017

  20. Xie, S., Girshick, R., Dollár, P., Tu, Z., He, K.: Aggregated Residual Transformations for Deep Neural Networks (2017)

    Google Scholar 

  21. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks 8689, 818–833 (2013). https://doi.org/10.1007/978-3-319-10590-1_53

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoqiang Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wu, P., Yang, Y., Li, X. (2018). Image-into-Image Steganography Using Deep Convolutional Network. In: Hong, R., Cheng, WH., Yamasaki, T., Wang, M., Ngo, CW. (eds) Advances in Multimedia Information Processing – PCM 2018. PCM 2018. Lecture Notes in Computer Science(), vol 11165. Springer, Cham. https://doi.org/10.1007/978-3-030-00767-6_73

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00767-6_73

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00766-9

  • Online ISBN: 978-3-030-00767-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics