Skip to main content

Self-supervised GAN for Image Generation by Correlating Image Channels

  • Conference paper
  • First Online:
Advances in Multimedia Information Processing – PCM 2018 (PCM 2018)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11165))

Included in the following conference series:

Abstract

Current most GAN-based methods directly generate all channels of a color image as a whole, while digging self-supervised information from the correlation between image channels for improving image generation has not been investigated. In this paper, we consider that a color image could be split into multiple sets of channels in terms of channels’ semantic, and these sets of channels are closely related rather than completely independent. By leveraging this characteristic of color images, we introduce self-supervised learning into the GAN framework, and propose a generative model called Self-supervised GAN. Specifically, we explicitly decompose the generation process as follows: (1) generate image channels, (2) correlate image channels, (3) concatenate image channels into the whole image. Based on these operations, we not only perform a basic adversarial learning task for generating images, but also construct an auxiliary self-supervised learning task for further regularizing generation procedures. Experimental results demonstrate that the proposed method can improve image generation compared with representative methods and possess capabilities of image colorization and image texturization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agrawal, P., Carreira, J., Malik, J.: Learning to see by moving. In: ICCV, pp. 37–45 (2015)

    Google Scholar 

  2. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein GAN. CoRR arXiv:1701.07875 (2017)

  3. Cao, Y., Zhou, Z., Zhang, W., Yu, Y.: Unsupervised diverse colorization via generative adversarial networks. In: Ceci, M., Hollmén, J., Todorovski, L., Vens, C., Džeroski, S. (eds.) ECML PKDD 2017. LNCS (LNAI), vol. 10534, pp. 151–166. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-71249-9_10

    Chapter  Google Scholar 

  4. Cheng, Z., Yang, Q., Sheng, B.: Deep colorization. In: ICCV, pp. 415–423 (2015)

    Google Scholar 

  5. Denton, E.L., Chintala, S., Szlam, A., Fergus, R.: Deep generative image models using a laplacian pyramid of adversarial networks. In: NIPS, pp. 1486–1494 (2015)

    Google Scholar 

  6. Deshpande, A., Rock, J., Forsyth, D.A.: Learning large-scale automatic image colorization. In: ICCV, pp. 567–575 (2015)

    Google Scholar 

  7. Doersch, C., Gupta, A., Efros, A.A.: Unsupervised visual representation learning by context prediction. In: ICCV. pp. 1422–1430 (2015)

    Google Scholar 

  8. Dosovitskiy, A., Fischer, P., Springenberg, J.T., Riedmiller, M.A., Brox, T.: Discriminative unsupervised feature learning with exemplar convolutional neural networks. PAMI 38(9), 1734–1747 (2016)

    Article  Google Scholar 

  9. Goodfellow, I.J., et al.: Generative adversarial nets. In: NIPS, pp. 2672–2680 (2014)

    Google Scholar 

  10. Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. In: NIPS, pp. 5769–5779 (2017)

    Google Scholar 

  11. Kim, T., Cha, M., Kim, H., Lee, J.K., Kim, J.: Learning to discover cross-domain relations with generative adversarial networks. In: ICML, pp. 1857–1865 (2017)

    Google Scholar 

  12. Krizhevsky, A., Hinton, G.: Learning multiple layers of features from tiny images (2009)

    Google Scholar 

  13. Larsson, G., Maire, M., Shakhnarovich, G.: Learning representations for automatic colorization. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 577–593. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_35

    Chapter  Google Scholar 

  14. Larsson, G., Maire, M., Shakhnarovich, G.: Colorization as a proxy task for visual understanding. In: CVPR, pp. 840–849 (2017)

    Google Scholar 

  15. Liu, M., Tuzel, O.: Coupled generative adversarial networks. In: NIPS, pp. 469–477 (2016)

    Google Scholar 

  16. Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z.: Multi-class generative adversarial networks with the L2 loss function. CoRR arXiv:1611.04076 (2016)

  17. Miyato, T., Kataoka, T., Koyama, M., Yoshida, Y.: Spectral normalization for generative adversarial networks. CoRR arXiv:1802.05957 (2018)

  18. Noroozi, M., Favaro, P.: Unsupervised learning of visual representations by solving jigsaw puzzles. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9910, pp. 69–84. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46466-4_5

    Chapter  Google Scholar 

  19. Nowozin, S., Cseke, B., Tomioka, R.: F-gan: Training generative neural samplers using variational divergence minimization. In: NIPS, pp. 271–279 (2016)

    Google Scholar 

  20. Pathak, D., Krähenbühl, P., Donahue, J., Darrell, T., Efros, A.A.: Context encoders: feature learning by inpainting. In: CVPR, pp. 2536–2544 (2016)

    Google Scholar 

  21. Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep convolutional generative adversarial networks. CoRR arXiv:1511.06434 (2015)

  22. Salimans, T., Goodfellow, I.J., Zaremba, W., Cheung, V., Radford, A., Chen, X.: Improved techniques for training gans. In: NIPS, pp. 2226–2234 (2016)

    Google Scholar 

  23. Wang, X., Gupta, A.: Unsupervised learning of visual representations using videos. In: ICCV, pp. 2794–2802 (2015)

    Google Scholar 

  24. Wang, X., Gupta, A.: Generative image modeling using style and structure adversarial networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 318–335. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_20

    Chapter  Google Scholar 

  25. Yang, J., Kannan, A., Batra, D., Parikh, D.: LR-GAN: layered recursive generative adversarial networks for image generation. CoRR arXiv:1703.01560 (2017)

  26. Zhang, H., et al.: Stackgan: text to photo-realistic image synthesis with stacked generative adversarial networks. CoRR arXiv:1612.03242 (2016)

  27. Zhang, R., Isola, P., Efros, A.A.: Colorful image colorization. In: ECCV, pp. 649–666 (2016)

    Google Scholar 

  28. Zhang, R., Isola, P., Efros, A.A.: Split-brain autoencoders: Unsupervised learning by cross-channel prediction. In: CVPR, pp. 645–654 (2017)

    Google Scholar 

  29. Zhao, J.J., Mathieu, M., LeCun, Y.: Energy-based generative adversarial network. CoRR arXiv:1609.03126 (2016)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hau-san Wong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Qian, S., Cao, Wm., Li, R., Wu, S., Wong, Hs. (2018). Self-supervised GAN for Image Generation by Correlating Image Channels. In: Hong, R., Cheng, WH., Yamasaki, T., Wang, M., Ngo, CW. (eds) Advances in Multimedia Information Processing – PCM 2018. PCM 2018. Lecture Notes in Computer Science(), vol 11165. Springer, Cham. https://doi.org/10.1007/978-3-030-00767-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00767-6_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00766-9

  • Online ISBN: 978-3-030-00767-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics