Abstract
The recent Correlation Filter (CF) based methods have shown attractive performance in visual tracking task. In real-time CF based trackers, they usually adopt hand-crafted features (e.g., HOG and Color Names), while these artificially designed features still have redundancy and can be further compressed and refined. In this paper, we design a lightweight network to offline learn how to compress the hand-crafted features for better and faster correlation tracking. To achieve this goal, we adopt CF as one layer in the network to force the learned model to be suitable for tracking task. Besides, we apply residual structure to avoid the overfitting problem in the training process. Our simple yet effective network is universal and can be applied to existing CF based trackers. After adopting our lightweight network, several state-of-the-art CF based trackers are improved in both tracking accuracy and efficiency.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bertinetto, L., Valmadre, J., Golodetz, S., Miksik, O., Torr, P.: Staple: complementary learners for real-time tracking. In: CVPR (2016)
Bertinetto, L., Valmadre, J., Henriques, J.F., Vedaldi, A., Torr, P.H.: Fully-convolutional siamese networks for object tracking. In: ECCV (2016)
Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: CVPR (2010)
Choi, J., Jin Chang, H., Jeong, J., Demiris, Y., Young Choi, J.: Visual tracking using attention-modulated disintegration and integration. In: CVPR (2016)
Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: CVPR (2005)
Danelljan, M., Bhat, G., Shahbaz Khan, F., Felsberg, M.: Eco: efficient convolution operators for tracking. In: CVPR (2017)
Danelljan, M., Häger, G., Khan, F., Felsberg, M.: Accurate scale estimation for robust visual tracking. In: BMVC (2014)
Danelljan, M., Hager, G., Shahbaz Khan, F., Felsberg, M.: Learning spatially regularized correlation filters for visual tracking. In: ICCV (2015)
Danelljan, M., Robinson, A., Khan, F.S., Felsberg, M.: Beyond correlation filters: learning continuous convolution operators for visual tracking. In: ECCV (2016)
Danelljan, M., Shahbaz Khan, F., Felsberg, M., Van de Weijer, J.: Adaptive color attributes for real-time visual tracking. In: CVPR (2014)
Galoogahi, H.K., Fagg, A., Lucey, S.: Learning background-aware correlation filters for visual tracking. In: ICCV (2017)
Guo, Q., Feng, W., Zhou, C., Huang, R., Wan, L., Wang, S.: Learning dynamic siamese network for visual object tracking. In: CVPR, pp. 1–9
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR (2016)
Henriques, J.F., Caseiro, R., Martins, P., Batista, J.: Exploiting the circulant structure of tracking-by-detection with kernels. In: ECCV (2012)
Henriques, J.F., Caseiro, R., Martins, P., Batista, J.: High-speed tracking with kernelized correlation filters. TPAMI 37(3), 583–596 (2015)
Li, Y., Zhu, J.: A scale adaptive kernel correlation filter tracker with feature integration. In: ECCV Workshop (2014)
Lukezic, A., Vojir, T., Cehovin Zajc, L., Matas, J., Kristan, M.: Discriminative correlation filter with channel and spatial reliability. In: CVPR (2017)
Ma, C., Huang, J.B., Yang, X., Yang, M.H.: Hierarchical convolutional features for visual tracking. In: ICCV (2015)
Ma, C., Yang, X., Zhang, C., Yang, M.H.: Long-term correlation tracking. In: CVPR (2015)
Nam, H., Han, B.: Learning multi-domain convolutional neural networks for visual tracking. In: CVPR (2016)
Qi, Y., Zhang, S., Qin, L., Yao, H., Huang, Q., Yang, J.L.M.H.: Hedged deep tracking. In: CVPR (2016)
Russakovsky, O., et al.: Imagenet large scale visual recognition challenge. IJCV 115(3), 211–252 (2015)
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)
Song, Y., Ma, C., Gong, L., Zhang, J., Lau, R., Yang, M.H.: Crest: convolutional residual learning for visual tracking. In: ICCV (2017)
Valmadre, J., Bertinetto, L., Henriques, J.F., Vedaldi, A., Torr, P.H.: End-to-end representation learning for correlation filter based tracking. In: CVPR (2017)
Vedaldi, A., Lenc, K.: Matconvnet: convolutional neural networks for matlab. In: ACM MM (2014)
Wang, M., Liu, Y., Huang, Z.: Large margin object tracking with circulant feature maps. In: CVPR (2017)
Wang, Q., Gao, J., Xing, J., Zhang, M., Hu, W.: Dcfnet: discriminant correlation filters network for visual tracking. arXiv preprint arXiv:1704.04057 (2017)
Weijer, J.V.D., Schmid, C., Verbeek, J., Larlus, D.: Learning color names for real-world applications. TIP 18(7), 1512–1523 (2009)
Wu, Y., Lim, J., Yang, M.H.: Online object tracking: a benchmark. In: CVPR (2013)
Wu, Y., Lim, J., Yang, M.H.: Object tracking benchmark. TPAMI 37(9), 1834–1848 (2015)
Zhang, J., Ma, S., Sclaroff, S.: Meem: robust tracking via multiple experts using entropy minimization. In: ECCV (2014)
Zhang, K., Zhang, L., Yang, M.H., Zhang, D.: Fast visual tracking via dense spatio-temporal context learning. In: ECCV (2013)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
Xie, C., Wang, N., Zhou, W., Li, W., Li, H. (2018). Residual Compression Network for Faster Correlation Tracking. In: Hong, R., Cheng, WH., Yamasaki, T., Wang, M., Ngo, CW. (eds) Advances in Multimedia Information Processing – PCM 2018. PCM 2018. Lecture Notes in Computer Science(), vol 11164. Springer, Cham. https://doi.org/10.1007/978-3-030-00776-8_32
Download citation
DOI: https://doi.org/10.1007/978-3-030-00776-8_32
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-00775-1
Online ISBN: 978-3-030-00776-8
eBook Packages: Computer ScienceComputer Science (R0)