Skip to main content

Adaptive Integration Skip Compensation Neural Networks for Removing Mixed Noise in Image

  • Conference paper
  • First Online:
Book cover Advances in Multimedia Information Processing – PCM 2018 (PCM 2018)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11164))

Included in the following conference series:

  • 3643 Accesses

Abstract

During the process of acquisition and transmission, images are often likely to be corrupted by mixed Gaussian-impulse noise. Among various image denoising methods, most traditional methods can only deal with a single type of noise due to the difficulty of modeling the distribution of the mixed noise. In this paper, we propose a novel mixed Gaussian-impulse noise removal method based on adaptive integration skip compensation Network (Ai-Sc-Net). More concretely, a couple of skip compensation networks (Sc-Net) Sc-Net-AWGN and Sc-Net-IN are trained on Gaussian and Impulse noise datasets separately to deal with the corresponding single type noise. Further, an adaptive integration network (Ai-Net) is used to integrate the two outputs of Sc-Net-AWGN and Sc-Net-IN. The Ai-Sc-Net is then be constructed based on Sc-Net and Ai-Net, which can handle mixed noise. Experimental results in synthetic noise images have shown great improvements over several state-of-the-art mixed noise removal methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chen, Y., Pock, T.: Trainable nonlinear reaction diffusion: a flexible framework for fast and effective image restoration. IEEE Trans. Pattern Anal. Mach. Intell. 39(6), 1256–1272 (2016)

    Article  Google Scholar 

  2. Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Image denoising by sparse 3-d transform-domain collaborative filtering. IEEE Trans. Image Process. 16(8), 2080–2095 (2007)

    Article  MathSciNet  Google Scholar 

  3. Dong, W., Zhang, L., Shi, G., Li, X.: Nonlocally centralized sparse representation for image restoration. IEEE Trans. Image Process. 22(4), 1620 (2013). A Publication of the IEEE Signal Processing Society

    Article  MathSciNet  Google Scholar 

  4. Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The PASCAL Visual Object Classes Challenge (VOC2012) Results (2012). http://www.pascal-network.org/challenges/VOC/voc2012/workshop/index.html

  5. Fan, H., Chen, Y., Guo, Y., Zhang, H., Kuang, G.: Hyperspectral image restoration using low-rank tensor recovery. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 10(10), 4589–4604 (2017)

    Article  Google Scholar 

  6. Garnett, R., Huegerich, T., Chui, C., He, W.: A universal noise removal algorithm with an impulse detector. IEEE Trans. Image Process. 14(11), 1747–1754 (2005)

    Article  Google Scholar 

  7. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  8. Huang, T., Dong, W., Xie, X., Shi, G., Bai, X.: Mixed noise removal via laplacian scale mixture modeling and nonlocal low-rank approximation. IEEE Trans. Image Process. 26(7), 3171–3186 (2017)

    Article  MathSciNet  Google Scholar 

  9. Jain, V., Seung, H.S.: Natural image denoising with convolutional networks. In: International Conference on Neural Information Processing Systems, pp. 769–776 (2008)

    Google Scholar 

  10. Jiang, J., Zhang, L., Yang, J.: Mixed noise removal by weighted encoding with sparse nonlocal regularization. IEEE Trans. Image Process. 23(6), 2651–2662 (2014)

    Article  MathSciNet  Google Scholar 

  11. Li, G., Huang, X., Li, S.G.: Adaptive bregmanized total variation model for mixed noise removal. AEU - Int. J. Electron. Commun. 80, 29–35 (2017)

    Article  Google Scholar 

  12. Liu, L., Chen, L., Chen, C.L., Tang, Y.Y., Pun, C.M.: Weighted joint sparse representation for removing mixed noise in image. IEEE Trans. Cybern. 47(3), 600–611 (2017)

    Article  Google Scholar 

  13. Mao, X.J., Shen, C., Yang, Y.B.: Image restoration using very deep convolutional encoder-decoder networks with symmetric skip connections (2016)

    Google Scholar 

  14. Paszke, A., et al.: Automatic differentiation in pytorch. In: NIPS-W (2017)

    Google Scholar 

  15. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  16. Sheikh, H.R., Bovik, A.C.: Image information and visual quality. IEEE Trans. Image Process. 15(2), 430–444 (2006)

    Article  Google Scholar 

  17. Tomasi, C., Manduchi, R.: Bilateral filtering for gray and color images ICCV. In: Proceedings of Sixth International Conference on ICCV, p. 839 (1998)

    Google Scholar 

  18. Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., Manzagol, P.A.: Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion. J. Mach. Learn. Res. 11(12), 3371–3408 (2010)

    MathSciNet  MATH  Google Scholar 

  19. Xiao, Y., Zeng, T., Yu, J., Ng, M.K.: Restoration of images corrupted by mixed gaussian-impulse noise via minimization. Pattern Recognit. 44(8), 1708–1720 (2011)

    Article  Google Scholar 

  20. Yan, M.: Restoration of images corrupted by impulse noise and mixed gaussian impulse noise using blind inpainting. SIAM J. Imaging Sci. 6(3), 1227–1245 (2013)

    Article  MathSciNet  Google Scholar 

  21. Yu, A.C., Peng, Q.: Robust recognition of checkerboard pattern for camera calibration. Opt. Eng. 45(9), 1173–1183 (2006)

    Article  Google Scholar 

  22. Zhang, K., Zuo, W., Chen, Y., Meng, D., Zhang, L.: Beyond a gaussian denoiser: residual learning of deep cnn for image denoising. IEEE Trans. Image Process. 26(7), 3142–3155 (2017). A Publication of the IEEE Signal Processing Society

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgment

This work was supported in part by the Project of National Engineering Laboratory for Video Technology - Shenzhen Division, in part by Shenzhen Key Laboratory for Intelligent Multimedia and Virtual Reality under Grant ZDSYS 201703031405467, and in part by the Shenzhen Municipal Development and Reform Commission (Disciplinary Development Program for Data Science and Intelligent Computing) under Grant 1230233753.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ge Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lin, K., Zhang, Y., Li, T.H., Huang, K., Li, G. (2018). Adaptive Integration Skip Compensation Neural Networks for Removing Mixed Noise in Image. In: Hong, R., Cheng, WH., Yamasaki, T., Wang, M., Ngo, CW. (eds) Advances in Multimedia Information Processing – PCM 2018. PCM 2018. Lecture Notes in Computer Science(), vol 11164. Springer, Cham. https://doi.org/10.1007/978-3-030-00776-8_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00776-8_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00775-1

  • Online ISBN: 978-3-030-00776-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics