Skip to main content

Multispectral Foreground Detection via Robust Cross-Modal Low-Rank Decomposition

  • Conference paper
  • First Online:
Advances in Multimedia Information Processing – PCM 2018 (PCM 2018)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11164))

Included in the following conference series:

Abstract

In this paper, we propose a novel approach which pursues cross-modal low-rank decomposition for robust multi-spectral foreground detection. For each spectrum, we employ the idea of low-rank and sparse decomposition to detect sparse moving objects against background with low-rank structure for its robustness to noises. Unlike simply combining multi-modal detecting results or compulsively enforcing a shared foreground mask in existing methods, we propose to pursue the cross modality consistency among heterogeneous modalities by introducing a soft cross-modality consistent constraint to the multi-modal low-rank decomposition model. Extensive experiments on the benchmark dataset GTFD suggest that our approach achieves superior performance over the state-of-the-art algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barnich, O., Droogenbroeck, M.V.: ViBe: a universal background subtraction algorithm for video sequences. IEEE Trans. Image Process. 20, 1709–1724 (2011)

    Article  MathSciNet  Google Scholar 

  2. Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. IEEE Trans. Pattern Anal. Mach. Intell. 23, 1222–1239 (2001)

    Article  Google Scholar 

  3. Candes, E., Li, X., Ma, Y., Wright, J.: Robust principal component analysis? J. ACM 58, 175–181 (2011)

    Article  MathSciNet  Google Scholar 

  4. Chen, Y., Wang, J., Zhu, B., Tang, M., Lu, H.: Pixel-wise deep sequence learning for moving object detection. IEEE Trans. Circuits Syst. Video Technol., 1 (2017)

    Google Scholar 

  5. Cho, S.H., Kang, H.B.: Abnormal behavior detection using hybrid agents in crowded scenes. Pattern Recogn. Lett. 44, 64–70 (2014)

    Article  Google Scholar 

  6. Davis, J., Sharma, V.: Background-subtraction using contour-based fusion of thermal and visible imagery. Comput. Vis. Image Underst. 106, 162–182 (2007)

    Article  Google Scholar 

  7. Guo, X., Wang, X., Yang, L., Cao, X., Ma, Y.: Robust foreground detection using smoothness and arbitrariness constraints. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8695, pp. 535–550. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10584-0_35

    Chapter  Google Scholar 

  8. Han, G., Cai, X., Wang, J.: Object detection based on combination of visible and thermal videos using a joint sample consensus background model. J. Softw. 8, 987–994 (2013)

    Google Scholar 

  9. Han, J., Bhanu, B.: Fusion of color and infrared video for moving human detection. Pattern Recogn. 40, 1771–1784 (2007)

    Article  Google Scholar 

  10. Hong, R., Hu, Z., Wang, R., Wang, M., Tao, D.: Multi-view object retrieval via multi-scale topic models. IEEE Trans. Image Process. 25, 5814–5827 (2016)

    Article  MathSciNet  Google Scholar 

  11. Hong, R., Zhang, L., Zhang, C., Zimmermann, R.: Flickr circles: aesthetic tendency discovery by multi-view regularized topic modeling. IEEE Trans. Multimedia 18, 1555–1567 (2016)

    Article  Google Scholar 

  12. Kolmogorov, V., Zabin, R.: What energy functions can be minimized via graph cuts? IEEE Trans. Pattern Anal. Mach. Intell. 2, 147–159 (2004)

    Article  Google Scholar 

  13. Li, C., Lin, L., Zuo, W., Wang, W., Tang, J.: An approach to streaming video segmentation with sub-optimal low-rank decomposition. IEEE Trans. Image Process. 25, 1947–1960 (2016)

    Article  MathSciNet  Google Scholar 

  14. Li, C., Wang, X., Zhang, L., Tang, J., Wu, H., Lin, L.: Weighted low-rank decomposition for robust grayscale-thermal foreground detection. IEEE Trans. Circuits Syst. Video Technol. 27, 725–738 (2017)

    Google Scholar 

  15. Li, C., Wu, X., Bao, Z., Tang, J.: ReGLe: spatially regularized graph learning for visual tracking. In: ACM, pp. 252–260 (2017)

    Google Scholar 

  16. Li, S.Z.: Markov Random Field Modeling in Image Analysis. Springer, London (2009). https://doi.org/10.1007/978-1-84800-279-1

    Book  MATH  Google Scholar 

  17. Lim, L.A., Keles, H.Y.: Foreground segmentation using a triplet convolutional neural network for multiscale feature encoding. arXiv preprint arXiv:1801.02225 (2018)

  18. Lucia, M., Alfredo, P.: A self-organizing approach to background subtraction for visual surveillance applications. IEEE Trans. Image Process. 17, 1168–1177 (2008)

    Article  MathSciNet  Google Scholar 

  19. Mazumder, R., Hastie, T., Tibshirani, R.: Spectral regularization algorithms for learning large incomplete matrices. J. Mach. Learn. Res. 11, 2287–2322 (2010)

    MathSciNet  MATH  Google Scholar 

  20. Narayana, M., Hanson, A., Learned-miller, E.: Background modeling using adaptive pixelwise kernel variances in a hybrid feature space. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2012)

    Google Scholar 

  21. Oreifej, O., Li, X., Shah, M.: Simultaneous video stabilization and moving object detection in turbulence. IEEE Trans. Pattern Anal. Mach. Intell. 35, 450–462 (2013)

    Article  Google Scholar 

  22. Recht, B., Fazel, M., Parrilo, P.A.: Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization. SIAM Rev. 52, 471–501 (2010)

    Article  MathSciNet  Google Scholar 

  23. St-Charles, P.L., Bilodeau, G.A., Bergevin, R.: Subsense: a universal change detection method with local adaptive sensitivity. IEEE Trans. Image Process. 24, 359–373 (2014)

    Article  MathSciNet  Google Scholar 

  24. Stauffer, C., Grimson, W.E.L.: Adaptive background mixture models for real-time tracking. In: 1999 Proceedings of the IEEE International Conference on Computer Vision, pp. 246–252 (1999)

    Google Scholar 

  25. Wang, X.: Intelligent multi-camera video surveillance: a review. Pattern Recogn. Lett. 34, 3–19 (2013)

    Article  Google Scholar 

  26. Xin, B., Tian, Y., Wang, Y., Gao, W.: Background subtraction via generalized fused lasso foreground modeling. arXiv preprint, pp. 4676–4684 (2015)

    Google Scholar 

  27. Xu, M., Li, C., Shi, H., Tang, J., Zheng, A.: Moving object detection via integrating spatial compactness and appearance consistency in the low-rank representation. In: Yang, J., et al. (eds.) CCCV 2017. CCIS, vol. 773, pp. 50–60. Springer, Singapore (2017). https://doi.org/10.1007/978-981-10-7305-2_5

    Chapter  Google Scholar 

  28. Yang, S., Luo, B., Li, C., Wang, G., Tang, J.: Fast grayscale-thermal foreground detection with collaborative low-rank decomposition. IEEE Trans. Circuits Syst. Video Technol., 1 (2017)

    Google Scholar 

  29. Ye, X., Yang, J., Sun, X., Li, K., Hou, C., Wang, Y.: Foreground-background separation from video clips via motion-assisted matrix restoration. IEEE Trans. Circuits Syst. Video Technol. 25, 1721–1734 (2015)

    Article  Google Scholar 

  30. Zhang, H., Xu, D.: Fusing color and texture features for background model. In: Wang, L., Jiao, L., Shi, G., Li, X., Liu, J. (eds.) FSKD 2006. LNCS (LNAI), vol. 4223, pp. 887–893. Springer, Heidelberg (2006). https://doi.org/10.1007/11881599_110

    Chapter  Google Scholar 

  31. Zhao, B., Li, Z., Liu, M., Cao, W., Liu, H.: Infrared and visible imagery fusion based on region saliency detection for 24-hours-surveillance systems. In: Proceeding of the IEEE International Conference on Robotics and Biomimetics (2013)

    Google Scholar 

  32. Zhou, X., Yang, C., Yu, W.: Moving object detection by detecting contiguous outliers in the low-rank representation. IEEE Trans. Pattern Anal. Mach. Intell. 35, 597–610 (2013)

    Article  Google Scholar 

Download references

Acknowledgment

This work was partially supported by the National Natural Science Foundation of China (61502006, 61702002, 61472002 and 61671018) and the Natural Science Foundation of Anhui Higher Education Institutions of China (KJ2017A017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chenglong Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zheng, A., Zhao, Y., Li, C., Tang, J., Luo, B. (2018). Multispectral Foreground Detection via Robust Cross-Modal Low-Rank Decomposition. In: Hong, R., Cheng, WH., Yamasaki, T., Wang, M., Ngo, CW. (eds) Advances in Multimedia Information Processing – PCM 2018. PCM 2018. Lecture Notes in Computer Science(), vol 11164. Springer, Cham. https://doi.org/10.1007/978-3-030-00776-8_75

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00776-8_75

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00775-1

  • Online ISBN: 978-3-030-00776-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics