Skip to main content

Enhanced Linear Discriminant Canonical Correlation Analysis for Cross-modal Fusion Recognition

  • Conference paper
  • First Online:
Advances in Multimedia Information Processing – PCM 2018 (PCM 2018)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11164))

Included in the following conference series:

  • 3606 Accesses

Abstract

Based on discriminant canonical correlation analysis of LDA, a new method of multimodal information analysis and fusion is proposed in this paper. We process data from two perspectives, single modality and cross-modal. More specifically, firstly, LDA is utilised to obtain the best projection matrix, this way, the data in each within-modal can be as centralized as possible. Secondly, the improved DCCA is used to process the output of first step in order to maximize within-class correlation and minimize between-class correlation. The above two steps prove beneficial to obtain the feature with higher discriminating ability which is essential for the average fusion recognition accuracy improvement. We show state-of-art results or better than state-of-art on widely used USM benchmarks against all existing results include CCA, LDA, DCCA, GCCA and KCCA.

Huabin Wang: The research work is supported by the National Natural Science Foundation of China (grant no.61372137).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Li, L., Jun, Z., Fei, J., et al.: An incremental face recognition system based on deep learning. In: 2017 Fifteenth IAPR International Conference on Machine Vision Applications (MVA), pp. 238–241. IEEE (2017). https://doi.org/10.23919/mva.2017.7986845

  2. Sun, Z., Zhang, H., Tan, T., et al.: Iris image classification based on hierarchical visual codebook. IEEE Trans. Pattern Anal. Mach. Intell. 36(6), 1120–1133 (2014). https://doi.org/10.1109/tpami.2013.234

    Article  Google Scholar 

  3. Liu, S., Liu, Y., Yu, J., et al.: Hierarchical static hand gesture recognition by combining finger detection and HOG features. J. Image Graph (2015)

    Google Scholar 

  4. Seng, K., Ang, L.M., Ooi, C.: A combined rule-based and machine learning audio-visual emotion recognition approach. IEEE Trans. Affect. Comput. (2016). https://doi.org/10.1109/TAFFC.2016.2588488

    Article  Google Scholar 

  5. Ahlawat, M., Kant, C.: An introduction to multimodal biometric system: an overview. Int. J. Sci. Res. Dev. 3(02), 2321–0613 (2015)

    Google Scholar 

  6. Zheng, H., Geng, X.: A multi-task model for simultaneous face identification and facial expression recognition. Neurocomputing 171, 515–523 (2016). https://doi.org/10.1016/j.neucom.20-15.06.079

    Article  Google Scholar 

  7. Wen, H., Liu, Y., Rekik, I., et al.: Multi-modal multiple kernel learning for accurate identification of tourette syndrome children. Pattern Recogn. 63, 601–611 (2017). https://doi.org/10.1016/j.patcog.2016.09.039

    Article  Google Scholar 

  8. Wang, S., Zhang, J., Zong, C.: Learning multimodal word representation via dynamic fusion methods. arXiv preprint arXiv:1801.00532 (2018)

  9. Liu, Q., Tang, L., Zhao, B.-J., et al.: Infrared target tracking based on adaptive multiple features fusion and mean shift. J. Electron. Inf. Technol. 34(5), 1137–1141 (2012). https://doi.org/10.3724/SP.J.1146.2011.01077

    Article  Google Scholar 

  10. Liu, H., Wu, Y., Sun, F., et al.: Weakly paired multimodal fusion for object recognition. IEEE Trans. Autom. Sci. Eng. 15(2), 784–795 (2018). https://doi.org/10.1109/TASE.2017.2692271

    Article  Google Scholar 

  11. Zeng, M., Wu, Z., Tian, C., et al.: Fusing appearance statistical features for person re-identification. J. Electron. Inf. Technol. 36(8), 1845–1851 (2014). https://doi.org/10.3724/SP.J.1146.2013.01389

    Article  Google Scholar 

  12. Meng, W., Wong, D.S., Furnell, S., et al.: Surveying the development of biometric user authentication on mobile phones. IEEE Commun. Surv. Tutorials 17(3), 1268–1293 (2015). https://doi.org/10.1109/COMST.2014.2386915

    Article  Google Scholar 

  13. Haghighat, M., Abdel-Mottaleb, M., Alhalabi, W.: Discriminant correlation analysis for feature level fusion with application to multimodal biometrics. In: IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 1866–1870 (2016). https://doi.org/10.1109/icassp.2016.7472000

  14. He, M., Horng, S.J., Fan, P., et al.: Performance evaluation of score level fusion in multimodal biometric systems. Pattern Recogn. 43(5), 1789–1800 (2010). https://doi.org/10.1016/j.patcog.2009.11.018

    Article  MATH  Google Scholar 

  15. Liu, H., Li, S.: Decision fusion of sparse representation and support vector machine for SAR image target recognition. Neurocomputing 113, 97–104 (2013). https://doi.org/10.1016/j.neucom.2013.01.033

    Article  Google Scholar 

  16. Liu, C., Wechsler, H.: A shape-and texture-based enhanced fisher classifier for face recognition. IEEE Trans. Image Process. 10(4), 598–608 (2001). https://doi.org/10.1109/83.913594

    Article  MATH  Google Scholar 

  17. Yang, J., Yang, J., Zhang, D., et al.: Feature fusion: parallel strategy vs. serial strategy. Pattern Recogn. 36(6), 1369–1381 (2003). https://doi.org/10.1016/S0031-3203(02)00262-5

    Article  MATH  Google Scholar 

  18. Sun, Q., Zeng, S., Yang, M., et al.: A new method of feature fusion and its application inimage recognition. Pattern Recogn. 38(12), 2437–2448 (2005). https://doi.org/10.1016/j.patcog.2004.12.013

    Article  Google Scholar 

  19. Sun, Q., Zeng, S., Yang, M., et al.: Combined feature extraction based on canonical correlation analysis and face recognition. J. Comput. Res. Dev. 42(4), 614–621 (2005). https://doi.org/10.1360/crad20050413

    Article  MathSciNet  Google Scholar 

  20. Kim, T.K., Kittler, J., Cipolla, R.: Discriminative learning and recognition of image set classes using canonical correlations. IEEE Trans. Pattern Anal. Mach. Intell. 29(6), 1005–1018 (2007). https://doi.org/10.1109/TPAMI.2007.1037

    Article  Google Scholar 

  21. Tenenhaus, A., Philippe, C., Guillemot, V., et al.: Variable selection for generalized canonical correlation analysis. Biostatistics. 15(3), 569–583 (2014). https://doi.org/10.1093/biostatistics/kxu001

    Article  Google Scholar 

  22. Jia, Z.: Multi-feature combination face recognition based on kernel canonical correlation analysis. Int. J. Signal Process. Image Process. Pattern Recogn. 9(7), 221–230 (2016)

    Article  Google Scholar 

  23. Haghighat, M., Abdel-Mottaleb, M., Alhalabi, W.: Discriminant correlation analysis: real-time feature level fusion for multimodal biometric recognition. IEEE Trans. Inf. Forensics Secur. 11(9), 1984–1996 (2016). https://doi.org/10.1109/TIFS.2016.2569061

    Article  Google Scholar 

  24. Gao, L., Qi, L., Chen, E., et al.: Discriminative multiple canonical correlation analysis for information fusion. IEEE Trans. Image Process. 27(4), 1951–1965 (2018). https://doi.org/10.1109/TIP.2017.2765820

    Article  MathSciNet  Google Scholar 

  25. Hotelling, H.: Relations between two sets of variates. Biometrika 28(3–4), 321–377 (1992). https://doi.org/10.2307/2333955

    Article  MATH  Google Scholar 

  26. Weenink, D.: Canonical correlation analysis. In: Proceedings of the Institute of Phonetic Sciences of the University of Amsterdam, vol. 25, pp. 81–99. University of Amsterdam (2003)

    Google Scholar 

  27. Sun, Q., Zeng, S., Yang, M., et al.: A new method of feature fusion and its application in image recognition. Pattern Recogn. 38(12), 2437–2448 (2005). https://doi.org/10.1016/j.patcog.2004.12.013

    Article  Google Scholar 

  28. Correa, N.M., Adali, T., Li, Y.-O., Calhoun, V.D.: Canonicalcorrelation analysis for data fusion and group inferences. IEEE Signal Process. Mag. 27(4), 39–50 (2010). https://doi.org/10.1109/34.598228

    Article  Google Scholar 

  29. Belhumeur, P.N., Hespanha, J.P., Kriegman, D.: Eigenfaces vs. fisherfaces: recognition using class specific linear projection. IEEE Trans. Pattern Anal. Mach. Intell. 19(7), 711–720 (1997). https://doi.org/10.1109/34.598228

    Article  Google Scholar 

  30. Dan, K.: A singularly valuable decomposition: the SVD of a matrix. Coll. Math. J. 27(1), 2–23 (1996). https://doi.org/10.2307/2687269

    Article  MathSciNet  Google Scholar 

  31. Zhou, H., Chen, S.: Ordinal discriminative canonical correlation analysis. J. Softw. 25(9), 2018–2025 (2014). https://doi.org/10.13328/j.cnki.jos.004649

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huabin Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yu, C., Wang, H., Liu, X., Tao, L. (2018). Enhanced Linear Discriminant Canonical Correlation Analysis for Cross-modal Fusion Recognition. In: Hong, R., Cheng, WH., Yamasaki, T., Wang, M., Ngo, CW. (eds) Advances in Multimedia Information Processing – PCM 2018. PCM 2018. Lecture Notes in Computer Science(), vol 11164. Springer, Cham. https://doi.org/10.1007/978-3-030-00776-8_77

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00776-8_77

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00775-1

  • Online ISBN: 978-3-030-00776-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics