Abstract
The paper investigates the possibilities of adapting various ADR algorithms to the Russian language environment. In general, the ADR detection process consists of 4 steps: (1) data collection from social media; (2) classification/filtering of ADR assertive text segments; (3) extraction of ADR mentions from text segments; (4) analysis of extracted ADR mentions for signal generation. The implementation of each step in the Russian-language environment is associated with a number of difficulties in comparison with the traditional English-speaking environment. First of all, they are connected with the lack of necessary databases and specialized language resources. In addition, an important negative role is played by the complex grammatical structure of the Russian language. The authors present various methods of machine learning algorithms adaptation in order to overcome these difficulties. For step 3 on the material of Russian-language text forums using the ensemble classifier, the Accuracy = 0.805 was obtained. For step 4 on the material of Russian-language EHR, by adapting pyConTextNLP, the F-measure = 0.935 was obtained, and by adapting ConText algorithm, the F-measure = 0.92–0.95 was obtained. A method for full-scale performing of step 4 was developed using cue-based and rule-based approaches, and the F-measure = 67.5% was obtained that is quite comparable to baseline.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
- 10.
- 11.
References
Afzal, Z., Pons, E., Kang, N., Sturkenboom, M.C., Schuemie, M.J., Kors, J.A.: ContextD: an algorithm to identify contextual properties of medical terms in a Dutch clinical corpus. BMC Bioinform. 15(1), 373 (2014)
Allahyari, M., et al.: Text summarization techniques: a brief survey. arXiv preprint arXiv:1707.02268 (2017)
Baranov, A., et al.: Technologies for complex intelligent clinical data analysis. Vestnik Rossiiskoi akademii meditsinskikh nauk 2, 160–171 (2016)
Bhatia, N., Jaiswal, A.: Automatic text summarization and it’s methods - a review. In: 2016 6th International Conference on Cloud System and Big Data Engineering, Confluence, pp. 65–72. IEEE (2016)
Gildeeva, G., Yurkov, V.: Pharmacovigilance in Russia: challenges, prospects and current state of affairs. J. Pharmacovigil. (2016)
Gonzalez, G.H., Tahsin, T., Goodale, B.C., Greene, A.C., Greene, C.S.: Recent advances and emerging applications in text and data mining for biomedical discovery. Brief. Bioinform. 17(1), 33–42 (2015)
Grozin, V., Buraya, K., Gusarova, N.: Comparison of text forum summarization depending on query type for text forums. In: Soh, P.J., Woo, W.L., Sulaiman, H.A., Othman, M.A., Saat, M.S. (eds.) Advances in Machine Learning and Signal Processing. LNEE, vol. 387, pp. 269–279. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-32213-1_24
Lapaev, M.: Automated extraction of concept matcher thesaurus from semi-structured catalogue-like sources of data on the web. In: 2016 18th Conference of Open Innovations Association and Seminar on Information Security and Protection of Information Technology, FRUCT-ISPIT, pp. 153–160. IEEE (2016)
Liu, X., Chen, H.: A research framework for pharmacovigilance in health social media: identification and evaluation of patient adverse drug event reports. J. Biomed. Inform. 58, 268–279 (2015)
Lushnov, M., Kudashov, V., Vodyaho, A., Lapaev, M., Zhukova, N., Korobov, D.: Medical knowledge representation for evaluation of patient’s state using complex indicators. In: Ngonga Ngomo, A.-C., Křemen, P. (eds.) KESW 2016. CCIS, vol. 649, pp. 344–359. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45880-9_26
Sarker, A., Gonzalez, G.: Portable automatic text classification for adverse drug reaction detection via multi-corpus training. J. Biomed. Inform. 53, 196–207 (2015)
Shelmanov, A., Smirnov, I., Vishneva, E.: Information extraction from clinical texts in Russian. In: Computational Linguistics and Intellectual Technologies: Papers from the Annual International Conference, Dialogue, vol. 14, pp. 537–549 (2015)
Velupillai, S., et al.: Cue-based assertion classification for Swedish clinical text—Developing a lexicon for pyConTextSwe. Artif. Intell. Med. 61(3), 137–144 (2014)
Acknowledgment
This work was financially supported by the Government of Russian Federation, “Grant 08-08”. This work financially supported by Ministry of Education and Science of the Russian Federation, Agreement #14.578.21.0196 (03/10/2016). Unique Identification RFMEFI57816X0196.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
Vatian, A. et al. (2018). Adaptation of Algorithms for Medical Information Retrieval for Working on Russian-Language Text Content. In: Sojka, P., Horák, A., Kopeček, I., Pala, K. (eds) Text, Speech, and Dialogue. TSD 2018. Lecture Notes in Computer Science(), vol 11107. Springer, Cham. https://doi.org/10.1007/978-3-030-00794-2_11
Download citation
DOI: https://doi.org/10.1007/978-3-030-00794-2_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-00793-5
Online ISBN: 978-3-030-00794-2
eBook Packages: Computer ScienceComputer Science (R0)