Abstract
In this paper, we present a NER system based upon deep learning models with character sequence encoding and word sequence encoding in LSTM layers. The results are boosted with LDA topic models and linear-chain CRF sequence tagging. We reach the new state-of-the-art performance in NER of 81.77 F-measure for Czech and 85.91 F-measure Spanish.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Long Short-Term Memory.
- 2.
Convolutional Neural Networks.
- 3.
Gated Recurrent Units.
- 4.
Conditional Random Fields.
- 5.
Latent Dirichlet allocation – see Sect. 2.1.
- 6.
- 7.
Downloaded from https://nlp.stanford.edu/projects/glove/.
- 8.
References
Abadi, M., et al.: TensorFlow: large-scale machine learning on heterogeneous systems (2015). https://www.tensorflow.org/, Software available from tensorflow.org
Agerri, R., Rigau, G.: Robust multilingual named entity recognition with shallow semi-supervised features. Artif. Intell. 238, 63–82 (2016)
Blei, D.M., Ng, A.Y., Jordan, M.I., Lafferty, J.: Latent dirichlet allocation. J. Mach. Learn. Res. 3 (2003)
Chiu, J., Nichols, E.: Named entity recognition with bidirectional LSTM-CNNs. Trans. Assoc. Comput. Linguist. 4, 357–370 (2016). http://aclweb.org/anthology/Q16-1026
Konkol, M., Brychcn, T., Konopk, M.: Latent semantics in named entity recognition. Expert Syst. Appl. 42(7), 3470–3479 (2015). https://doi.org/10.1016/j.eswa.2014.12.015, http://www.sciencedirect.com/science/article/pii/S0957417414007933
Konkol, M., Konopík, M.: CRF-based Czech named entity recognizer and consolidation of Czech NER research. In: Habernal, I., Matoušek, V. (eds.) TSD 2013. LNCS (LNAI), vol. 8082, pp. 153–160. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40585-3_20
Lample, G., Ballesteros, M., Subramanian, S., Kawakami, K., Dyer, C.: Neural architectures for named entity recognition. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp. 260–270. Association for Computational Linguistics (2016). https://doi.org/10.18653/v1/N16-1030, http://www.aclweb.org/anthology/N16-1030
Ma, X., Hovy, E.: End-to-end sequence labeling via bi-directional LSTM-CNNs-CRF. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, ACL 2016, Berlin, Germany, 7–12 August 2016, vol. 1: Long Papers. The Association for Computer Linguistics (2016). http://aclweb.org/anthology/P/P16/P16-1101.pdf
McCallum, A.K.: Mallet: a machine learning for language toolkit (2002). http://mallet.cs.umass.edu
Nallapati, R., Surdeanu, M., Manning, C.: Blind domain transfer for named entity recognition using generative latent topic models. In: Proceedings of the NIPS 2010 Workshop on Transfer Learning Via Rich Generative Models, pp. 281–289 (2010)
dos Santos, C.N., Guimarães, V.: Boosting named entity recognition with neural character embeddings. In: Duan, X., Banchs, R.E., Zhang, M., Li, H., Kumaran, A. (eds.) Proceedings of the Fifth Named Entity Workshop, NEWS@ACL 2015, Beijing, China, 31 July 2015, pp. 25–33. Association for Computational Linguistics (2015). https://doi.org/10.18653/v1/W15-3904
Straková, J., Straka, M., Hajič, J.: Neural networks for featureless named entity recognition in Czech. In: Sojka, P., Horák, A., Kopeček, I., Pala, K. (eds.) TSD 2016. LNCS (LNAI), vol. 9924, pp. 173–181. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45510-5_20
Tjong Kim Sang, E.F.: Introduction to the CoNLL-2002 shared task: language-independent named entity recognition. In: Proceedings of CoNLL 2002, Taipei, Taiwan, pp. 155–158 (2002)
Ševčíková, M., Žabokrtský, Z., Krůza, O.: Named entities in Czech: annotating data and developing NE tagger. In: Matoušek, V., Mautner, P. (eds.) TSD 2007. LNCS (LNAI), vol. 4629, pp. 188–195. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74628-7_26. http://dl.acm.org/citation.cfm?id=1776334.1776362
Yang, Z., Salakhutdinov, R., Cohen, W.W.: Multi-task cross-lingual sequence tagging from scratch. CoRR abs/1603.06270 (2016). http://dblp.uni-trier.de/db/journals/corr/corr1603.html#YangSC16
Acknowledgements
This work was supported by Ministry of Education, Youth and Sports of the Czech Republic, institutional research support (1311) and by the UWB grant no. SGS-2013-029 Advanced computing and information systems. Access to the MetaCentrum computing facilities provided under the program “Projects of Large Infrastructure for Research, Development, and Innovations” LM2010005, funded by the Ministry of Education, Youth, and Sports of the Czech Republic, is highly appreciated.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
Konopík, M., Pražák, O. (2018). LDA in Character-LSTM-CRF Named Entity Recognition. In: Sojka, P., Horák, A., Kopeček, I., Pala, K. (eds) Text, Speech, and Dialogue. TSD 2018. Lecture Notes in Computer Science(), vol 11107. Springer, Cham. https://doi.org/10.1007/978-3-030-00794-2_6
Download citation
DOI: https://doi.org/10.1007/978-3-030-00794-2_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-00793-5
Online ISBN: 978-3-030-00794-2
eBook Packages: Computer ScienceComputer Science (R0)