Skip to main content

Deep Learning the Protein Function in Protein Interaction Networks

  • Conference paper
  • First Online:
ICT Innovations 2018. Engineering and Life Sciences (ICT 2018)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 940))

Included in the following conference series:

  • 873 Accesses

Abstract

One of the essential challenges in proteomics is the computational function prediction. In Protein Interaction Networks (PINs) this problem is one of proper labeling of corresponding nodes. In this paper a novel three-step approach for supervised protein function learning in PINs is proposed. The first step derives continuous vector representation for the PIN nodes using semi-supervised learning. The vectors are constructed so that they maximize the likelihood of preservation of the graph topology locally and globally. The next step is to binarize the PIN graph nodes (proteins) i.e. for each protein function derived from Gene Ontology (GO) determine the positive and negative set of nodes. The challenge of determining the negative node sets is solved by random walking the GO acyclic graph weighted by a semantic similarity metric. A simple deep learning six-layer model is built for the protein function learning as the final step. Experiments are performed using a highly reliable human protein interaction network. Results indicate that the proposed approach can be very successful in determining protein function since the Area Under the Curve values are high (>0.79) even though the experimental setup is very simple, and its performance is comparable with state-of-the-art competing methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cao, M., et al.: Going the distance for protein function prediction: a new distance metric for protein interaction networks. PLoS ONE 8, e76339 (2013)

    Article  Google Scholar 

  2. Cao, S., Lu, W., Xu, Q.: Grarep: learning graph representations with global structural information. In: Proceedings of the 24th ACM International on Conference on Information and Knowledge Management, pp. 891–900. ACM (2015)

    Google Scholar 

  3. Cesa-Bianchi, N., Re, M., Valentini, G.: Synergy of multi-label hierarchical ensembles, data fusion, and cost-sensitive methods for gene functional inference. Mach. Learn. 88, 209–241 (2012)

    Article  MathSciNet  Google Scholar 

  4. Consortium, G.O.: Expansion of the Gene Ontology knowledgebase and resources. Nucl. Acids Res. 45, D331–D338 (2016)

    Google Scholar 

  5. Friedberg, I.: Automated protein function prediction—the genomic challenge. Brief. Bioinform. 7, 225–242 (2006)

    Article  Google Scholar 

  6. Fu, G., Wang, J., Yang, B., Yu, G.: NegGOA: negative GO annotations selection using ontology structure. Bioinformatics 32, 2996–3004 (2016)

    Article  Google Scholar 

  7. Grover, A., Leskovec, J.: node2vec: scalable feature learning for networks. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 855–864. ACM (2016)

    Google Scholar 

  8. Guan, Y., Myers, C.L., Hess, D.C., Barutcuoglu, Z., Caudy, A.A., Troyanskaya, O.G.: Predicting gene function in a hierarchical context with an ensemble of classifiers. Genome Biol. 9, S3 (2008)

    Article  Google Scholar 

  9. Hakes, L., Lovell, S.C., Oliver, S.G., Robertson, D.L.: Specificity in protein interactions and its relationship with sequence diversity and coevolution. Proc. Natl. Acad. Sci. 104, 7999–8004 (2007)

    Article  Google Scholar 

  10. Hishigaki, H., Nakai, K., Ono, T., Tanigami, A., Takagi, T.: Assessment of prediction accuracy of protein function from protein–protein interaction data. Yeast 18, 523–531 (2001)

    Article  Google Scholar 

  11. Hu, H., Yan, X., Huang, Y., Han, J., Zhou, X.J.: Mining coherent dense subgraphs across massive biological networks for functional discovery. Bioinformatics 21, i213–i221 (2005)

    Article  Google Scholar 

  12. Hu, L., Huang, T., Shi, X., Lu, W.-C., Cai, Y.-D., Chou, K.-C.: Predicting functions of proteins in mouse based on weighted protein-protein interaction network and protein hybrid properties. PLoS ONE 6, e14556 (2011)

    Article  Google Scholar 

  13. Hulsman, M., Dimitrakopoulos, C., de Ridder, J.: Scale-space measures for graph topology link protein network architecture to function. Bioinformatics 30, i237–i245 (2014)

    Article  Google Scholar 

  14. Jiang, Y., et al.: An expanded evaluation of protein function prediction methods shows an improvement in accuracy. Genome Biol. 17, 184 (2016)

    Article  Google Scholar 

  15. Li, Z., et al.: Large-scale identification of human protein function using topological features of interaction network. Sci. Rep. 6, 37179 (2016)

    Article  Google Scholar 

  16. McDermott, J., Bumgarner, R., Samudrala, R.: Functional annotation from predicted protein interaction networks. Bioinformatics 21, 3217–3226 (2005)

    Article  Google Scholar 

  17. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 (2013)

  18. Mostafavi, S., Morris, Q.: Using the gene ontology hierarchy when predicting gene function. In: Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence, pp. 419–427. AUAI Press (2009)

    Google Scholar 

  19. Mukhopadhyay, A., Ray, S., De, M.: Detecting protein complexes in a PPI network: a gene ontology based multi-objective evolutionary approach. Mol. BioSystems 8, 3036–3048 (2012)

    Article  Google Scholar 

  20. Nabieva, E., Jim, K., Agarwal, A., Chazelle, B., Singh, M.: Whole-proteome prediction of protein function via graph-theoretic analysis of interaction maps. Bioinformatics 21, i302–i310 (2005)

    Article  Google Scholar 

  21. Perozzi, B., Al-Rfou, R., Skiena, S.: Deepwalk: online learning of social representations. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 701–710. ACM (2014)

    Google Scholar 

  22. Schaefer, M.H., Fontaine, J.-F., Vinayagam, A., Porras, P., Wanker, E.E., Andrade-Navarro, M.A.: HIPPIE: integrating protein interaction networks with experiment based quality scores. PLoS ONE 7, e31826 (2012)

    Article  Google Scholar 

  23. Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., Mei, Q.: Line: large-scale information network embedding. In: Proceedings of the 24th International Conference on World Wide Web, pp. 1067–1077. International World Wide Web Conferences Steering Committee (2015)

    Google Scholar 

  24. Trivodaliev, K., Bogojeska, A., Kocarev, L.: Exploring function prediction in protein interaction networks via clustering methods. PLoS ONE 9, e99755 (2014)

    Article  Google Scholar 

  25. Trivodaliev, K., Cingovska, I., Kalajdziski, S., Davcev, D.: Protein function prediction based on neighborhood profiles. In: Davcev, D., Gómez, J.M. (eds.) ICT Innovations 2009, pp. 125–134. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-10781-8_14

    Chapter  Google Scholar 

  26. Trivodaliev, K., Kalajdziski, S., Ivanoska, I., Stojkoska, B.R., Kocarev, L.: SHOPIN: semantic homogeneity optimization in protein interaction networks. In: Advances in Protein Chemistry and Structural Biology, vol. 101, pp. 323–349. Elsevier (2015)

    Google Scholar 

  27. Valentini, G.: Hierarchical ensemble methods for protein function prediction. ISRN Bioinform. 2014, 1–31 (2014)

    Article  Google Scholar 

  28. Wang, D., Cui, P., Zhu, W.: Structural deep network embedding. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1225–1234. ACM (2016)

    Google Scholar 

  29. Yang, C., Liu, Z., Zhao, D., Sun, M., Chang, E.Y.: Network representation learning with rich text information. In: IJCAI, pp. 2111–2117 (2015)

    Google Scholar 

  30. Youngs, N., Penfold-Brown, D., Bonneau, R., Shasha, D.: Negative example selection for protein function prediction: the NoGO database. PLoS Comput. Biol. 10, e1003644 (2014)

    Article  Google Scholar 

  31. Youngs, N., Penfold-Brown, D., Drew, K., Shasha, D., Bonneau, R.: Parametric Bayesian priors and better choice of negative examples improve protein function prediction. Bioinformatics 29, 1190–1198 (2013)

    Article  Google Scholar 

  32. Zhang, Y., Lin, H., Yang, Z., Wang, J., Li, Y., Xu, B.: Protein complex prediction in large ontology attributed protein-protein interaction networks. IEEE/ACM Trans. Comput. Biol. Bioinform. 10, 729–741 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kire Trivodaliev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Trivodaliev, K., Josifoski, M., Kalajdziski, S. (2018). Deep Learning the Protein Function in Protein Interaction Networks. In: Kalajdziski, S., Ackovska, N. (eds) ICT Innovations 2018. Engineering and Life Sciences. ICT 2018. Communications in Computer and Information Science, vol 940. Springer, Cham. https://doi.org/10.1007/978-3-030-00825-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00825-3_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00824-6

  • Online ISBN: 978-3-030-00825-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics