Skip to main content

Explorations into Deep Neural Models for Emotion Recognition

  • Conference paper
  • First Online:

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 940))

Abstract

Deep emotion recognition is the central objective of our recent research efforts. This study examines the capability of several deep learning architectures and word embeddings to classify emotions on two Twitter datasets. We have identified several aspects worth investigating that appeared to challenge and contrast previously established notion that semantic information is captured by distributional word representations. Our evidence has shown that extending the word embeddings to account for the use of emojis and incorporating a suitable lexicon of emotional words can lead to a better classification of the emotional content carried by Twitter messages.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    https://competitions.codalab.org/competitions/17751#learn_the_details-datasets, last accessed: May 2018.

  2. 2.

    https://data.world/crowdflower/sentiment-analysis-in-text, last accessed: May 2018.

  3. 3.

    https://www.nltk.org/, last accessed: May 2018.

  4. 4.

    https://nlp.stanford.edu/projects/glove/, last accessed: May 2018.

  5. 5.

    https://github.com/felipebravom/AffectiveTweets/releases/tag/1.0.0, last accessed: May 2018.

  6. 6.

    https://www.cs.waikato.ac.nz/ml/sa/files/, last accessed: May 2018.

References

  1. Abdul-Mageed, M., Ungar, L.: Emonet: fine-grained emotion detection with gated recurrent neural networks. In: Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), vol. 1, pp. 718–728 (2017)

    Google Scholar 

  2. Adliterate.com: Robert plutchik’s psychoevolutionary theory of basic emotions. http://www.adliterate.com/archives/Plutchik.emotion.theorie.POSTER.pdf. Accessed 09 May 2018

  3. Alm, C.O., Roth, D., Sproat, R.: Emotions from text: machine learning for text-based emotion prediction. In: Proceedings of the Conference on Human Language Technology and Empirical Methods in Natural Language Processing, pp. 579–586. Association for Computational Linguistics (2005)

    Google Scholar 

  4. Barrett, L.F., Lindquist, K.A., Gendron, M.: Language as context for the perception of emotion. Trends Cogn. Sci. 11(8), 327–332 (2007)

    Article  Google Scholar 

  5. Bertero, D., Siddique, F.B., Wu, C.S., Wan, Y., Chan, R.H.Y., Fung, P.: Real-time speech emotion and sentiment recognition for interactive dialogue systems. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1042–1047 (2016)

    Google Scholar 

  6. Binali, H., Wu, C., Potdar, V.: Computational approaches for emotion detection in text. In: Proceedings of the 4th IEEE International Conference on Digital Ecosystems and Technologies, pp. 172–177. IEEE (2010)

    Google Scholar 

  7. Bravo-Marquez, F., Frank, E., Mohammad, S., Pfahringer, B.: Determining word-emotion associations from tweets by multi-label classification. In: Proceedings of the 2016 IEEE/WIC/ACM International Conference on Web Intelligence (WI), pp. 536–539 (2016)

    Google Scholar 

  8. Charniak, E.: Statistical parsing with a context-free grammar and word statistics. In: Proceedings of the Fourteenth National Conference on Artificial Intelligence and Ninth Conference on Innovative Applications of Artificial Intelligence, pp. 598–603. AAAI Press (1997)

    Google Scholar 

  9. Eickenberg, M., Gramfort, A., Varoquaux, G., Thirion, B.: Seeing it all: convolutional network layers map the function of the human visual system. NeuroImage 152, 184–194 (2017)

    Article  Google Scholar 

  10. Eisner, B., Rocktäschel, T., Augenstein, I., Bosnjak, M., Riedel, S.: emoji2vec: Learning emoji representations from their description. In: Proceedings of The Fourth International Workshop on Natural Language Processing for Social Media, pp. 48–54 (2016)

    Google Scholar 

  11. Ekman, P.: An argument for basic emotions. Cogn. Emot. 6(3–4), 169–200 (1992)

    Article  Google Scholar 

  12. Ghosh, A., Veale, T.: Magnets for sarcasm: making sarcasm detection timely, contextual and very personal. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 482–491 (2017)

    Google Scholar 

  13. Gievska, S., Koroveshovski, K., Chavdarova, T.: A hybrid approach for emotion detection in support of affective interaction. In: Proceedings of the 2014 IEEE International Conference on Data Mining Workshop, pp. 352–359. IEEE (2014)

    Google Scholar 

  14. Hasan, M., Rundensteiner, E., Agu, E.: EMOTEX: detecting emotions in twitter messages. In: Proceedings of the Sixth ASE International Conference on Social Computing (SocialCom 2014). Academy of Science and Engineering (ASE) (2014)

    Google Scholar 

  15. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  16. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: Proceedings of the 32nd International Conference on Machine Learning, vol. 37, pp. 448–456 (2015)

    Google Scholar 

  17. Jelinek, F., Lafferty, J.D., Mercer, R.L.: Basic methods of probabilistic context free grammars. In: Laface, P., De Mori, R. (eds.) Speech Recognition and Understanding. NATO ASI Series, vol. 75, pp. 345–360. Springer, Heidelberg (1992). https://doi.org/10.1007/978-3-642-76626-8_35

    Chapter  Google Scholar 

  18. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. CoRR abs/1412.6980 (2014)

    Google Scholar 

  19. van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9, 2579–2605 (2008)

    MATH  Google Scholar 

  20. Mikolov, T., Chen, K., Corrado, G.S., Dean, J.: Efficient estimation of word representations in vector space. CoRR abs/1301.3781 (2013)

    Google Scholar 

  21. Mikolov, T., Yih, W., Zweig, G.: Linguistic regularities in continuous space word representations. In: Proceedings of the 2013 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp. 746–751 (2013)

    Google Scholar 

  22. Najdenkoska, I., Stojanovska, F., Gievska, S.: Detecting emotions in tweets based on hybrid approach. In: Proceedings of the 15th International Conference on Informatics and Information Technologies (2018)

    Google Scholar 

  23. Patterson, J., Gibson, A.: Deep Learning: A Practitioner’s Approach. O’Reilly Media Inc., Newton (2017)

    Google Scholar 

  24. Pennington, J., Socher, R., Manning, C.: Glove: global vectors for word representation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1532–1543 (2014)

    Google Scholar 

  25. Plutchik, R.: Emotion: A Psychoevolutionary Synthesis. Harpercollins College Division, New York (1980)

    Google Scholar 

  26. Plutchik, R.: Emotions: a general psychoevolutionary theory. In: Scherer, K.R., Ekman, P. (eds.) Approaches to Emotion, pp. 197–219. Erlbaum, Hillsdale (1984)

    Google Scholar 

  27. Plutchik, R.: Integration, differentiation, and derivatives of emotion. Evol. Cogn. 7(2), 114–125 (2001)

    Google Scholar 

  28. Reddi, S.J., Kale, S., Kumar, S.: On the convergence of adam and beyond. In: Proceedings of the International Conference on Learning Representations (2018)

    Google Scholar 

  29. Russell, J.A.: A circumplex model of affect. J. Pers. Soc. Psychol. 39(6), 1161 (1980)

    Article  Google Scholar 

  30. Schuster, M., Paliwal, K.K.: Bidirectional recurrent neural networks. IEEE Trans. Sig. Process. 45(11), 2673–2681 (1997)

    Article  Google Scholar 

  31. Seyeditabari, A., Zadrozny, W.: Can word embeddings help find latent emotions in text? Preliminary results. In: Proceedings of the Thirtieth International Florida Artificial Intelligence Research Society Conference, pp. 206–209 (2017)

    Google Scholar 

  32. Shaheen, S., El-Hajj, W., Hajj, H., Elbassuoni, S.: Emotion recognition from text based on automatically generated rules. In: 2014 IEEE International Conference on Data Mining Workshop (ICDMW), pp. 383–392. IEEE (2014)

    Google Scholar 

  33. Shin, B., Lee, T., Choi, J.D.: Lexicon integrated CNN models with attention for sentiment analysis. In: Proceedings of the 8th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis, pp. 149–158 (2017)

    Google Scholar 

  34. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  35. Wang, Z., Zhang, Y., Lee, S., Li, S., Zhou, G.: A bilingual attention network for code-switched emotion prediction. In: Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers, pp. 1624–1634 (2016)

    Google Scholar 

  36. Warriner, A.B., Kuperman, V., Brysbaert, M.: Norms of valence, arousal, and dominance for 13,915 English lemmas. Behav. Res. Methods 45(4), 1191–1207 (2013)

    Article  Google Scholar 

  37. Zahiri, S.M., Choi, J.D.: Emotion detection on TV show transcripts with sequence-based convolutional neural networks. In: The Workshops of the Thirty-Second AAAI Conference on Artificial Intelligence, New Orleans, Louisiana, USA, 2–7 February 2018, pp. 44–52 (2018)

    Google Scholar 

  38. Zhou, C., Sun, C., Liu, Z., Lau, F.C.M.: A C-LSTM neural network for text classification. CoRR abs/1511.08630 (2015)

    Google Scholar 

Download references

Acknowledgements

This work was partially financed by the Faculty of Computer Science and Engineering at the “Ss. Cyril and Methodius” University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frosina Stojanovska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Stojanovska, F., Toshevska, M., Gievska, S. (2018). Explorations into Deep Neural Models for Emotion Recognition. In: Kalajdziski, S., Ackovska, N. (eds) ICT Innovations 2018. Engineering and Life Sciences. ICT 2018. Communications in Computer and Information Science, vol 940. Springer, Cham. https://doi.org/10.1007/978-3-030-00825-3_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00825-3_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00824-6

  • Online ISBN: 978-3-030-00825-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics