Skip to main content

Matrix and Tensor-Based Approximation of 3D Face Animations from Low-Cost Range Sensors

  • Conference paper
  • First Online:
Computer and Information Sciences (ISCIS 2018)

Abstract

Three-dimensional animation is often represented in the form of a sequence of 3D meshes, also called dynamic animation or Temporally Coherent Mesh Sequence (TCMS). Widespread availability of affordable range sensors makes capturing such data easy, however, its huge volume complicates both storage and further processing. One of the possible solutions is to approximate the data using matrix or tensor decomposition. However the quality the animation may have different impact on both approaches. In this work we use the Microsoft Kinect™ to crate sequences of human face models and compare the approximation error obtained from modelling animations using Principal component analysis (PCA) and Higher Order Singular Value Decomposition (HOSVD). We focus on distortion introduced by reconstruction of data from its truncated factorization. We show that while HOSVD may outperform PCA in terms of approximation error, it may be significantly affected by distortion in animation data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.microsoft.com/en-us/kinectforwindows/develop.

References

  1. De Aguiar, E., Theobalt, C., Thrun, S., Seidel, H.-P.: Automatic conversion of mesh animations into skeleton-based animations. In: Computer Graphics Forum, vol. 27, no. 2, pp. 389–397. Wiley Online Library (2008)

    Google Scholar 

  2. Starck, J., Hilton, A.: Surface capture for performance-based animation. Comput. Graph. Appl. IEEE 27(3), 21–31 (2007)

    Article  Google Scholar 

  3. Arcila, R., Cagniart, C., Hétroy, F., Boyer, E., Dupont, F.: Segmentation of temporal mesh sequences into rigidly moving components. Graph. Models 75(1), 10–22 (2013)

    Article  Google Scholar 

  4. Tong, J., Zhou, J., Liu, L., Pan, Z., Yan, H.: Scanning 3d full human bodies using kinects. IEEE Trans. Vis. Comput. Graph. 18(4), 643–650 (2012)

    Article  Google Scholar 

  5. Váša, L., Skala, V.: Cobra: compression of the basis for pca represented animations. In: Computer Graphics Forum, vol. 28, no. 6, pp. 1529–1540. Wiley Online Library (2009)

    Google Scholar 

  6. Breidt, M., Biilthoff, H.H., Curio, C.: Robust semantic analysis by synthesis of 3d facial motion. In: 2011 IEEE International Conference on Automatic Face and Gesture Recognition and Workshops (FG 2011), pp. 713–719. IEEE (2011)

    Google Scholar 

  7. Akhter, I., Simon, T., Khan, S., Matthews, I., Sheikh, Y.: Bilinear spatiotemporal basis models. ACM Trans. Graph. (TOG) 31(2), 17 (2012)

    Article  Google Scholar 

  8. Romaszewski, M., Głomb, P.: Parameter estimation for hosvd-based approximation of temporally coherent mesh sequences. In: Proceedings of the 11th Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, pp. 138–145 (2016)

    Google Scholar 

  9. Romaszewski, M., Gawron, P., Opozda, S.: Dimensionality reduction of dynamic animations using HO-SVD. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2014. LNCS (LNAI), vol. 8467, pp. 757–768. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07173-2_65

    Chapter  Google Scholar 

  10. Kolda, T.G., Bader, B.W.: Tensor decompositions and applications. SIAM Rev. 51(3), 455–500 (2009)

    Article  MathSciNet  Google Scholar 

  11. Jolliffe, I.: Principal Component Analysis. Wiley Online Library (2005)

    Google Scholar 

  12. Savran, A., et al.: Bosphorus database for 3D face analysis. In: Schouten, B., Juul, N.C., Drygajlo, A., Tistarelli, M. (eds.) BioID 2008. LNCS, vol. 5372, pp. 47–56. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89991-4_6

    Chapter  Google Scholar 

  13. Zollhöfer, M., Martinek, M., Greiner, G., Stamminger, M., Süßmuth, J.: Automatic reconstruction of personalized avatars from 3D face scans. Comput. Animat. Virtual Worlds 22(2–3), 195–202 (2011). https://doi.org/10.1002/cav.405

    Article  Google Scholar 

  14. Rusinkiewicz, S., Levoy, M.: Efficient variants of the ICP algorithm. In: Proceedings of the Third International Conference on 3-D Digital Imaging and Modeling 2001, pp. 145–152. IEEE (2001)

    Google Scholar 

  15. Shakhnarovich, G., Darrell, T., Indyk, P.: Nearest-Neighbor Methods in Learning and Vision: Theory and Practice (Neural Information Processing). The MIT press (2006)

    Google Scholar 

Download references

Acknowledgements

This work is partially based on results of the National Science for Research and Development projects: INNOTECH-K2/IN2/50/182645/NCBR/12 and National Science Centre, decision 2011/03/D/ST6/03753. Authors would like to thank Sebastian Opozda for his help with data visualization and development of experimental environment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michał Romaszewski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Romaszewski, M., Sochan, A., Skabek, K. (2018). Matrix and Tensor-Based Approximation of 3D Face Animations from Low-Cost Range Sensors. In: Czachórski, T., Gelenbe, E., Grochla, K., Lent, R. (eds) Computer and Information Sciences. ISCIS 2018. Communications in Computer and Information Science, vol 935. Springer, Cham. https://doi.org/10.1007/978-3-030-00840-6_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00840-6_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00839-0

  • Online ISBN: 978-3-030-00840-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics