Skip to main content

Inductive Discovery by Machine Learning for Identification of Structural Models

  • Conference paper
  • First Online:
Conceptual Modeling (ER 2018)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11157))

Included in the following conference series:

Abstract

Automatic extraction of structural models interferes with the deductive research method in information systems research. Nonetheless it is tempting to use a statistical learning method for assessing meaningful relations between structural variables given the underlying measurement model. In this paper, we discuss the epistemological background for this method and describe its general structure. Thereafter this method is applied in a mode of inductive confirmation to an existing data set that has been used for evaluating a deductively derived structural model. In this study, a range of machine learning model classes is used for statistical learning and results are compared with the original model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anderson, C.: The end of theory: The data deluge makes the scientific method obsolete. Wired magazine 16(7) (2008). 16–07

    Google Scholar 

  2. Anderson, J.C., Gerbing, D.W.: Structural equation modeling in practice: a review and recommended two-step approach. Psychol. Bull. 103(3), 411 (1988)

    Article  Google Scholar 

  3. Berente, N., Seidel, S., Safadi, H.: Data-driven computationally-intensive theory development. Inf. Syst. Res. (forthcoming)

    Google Scholar 

  4. Bishop, C.M.: Pattern Recognition and Machine Learning (Information Science and Statistics). Springer, New York, Secaucus (2006)

    MATH  Google Scholar 

  5. Christopher, M.B.: Pattern Recognition And Machine Learning. Springer, New York (2016)

    Google Scholar 

  6. Fife, D.A., Rodgers, J.L., Mendoza, J.L.: Model conditioned data elasticity in path analysis: assessing the “confoundability” of model/data characteristics. Multivar. Behav. Res. 49(6), 597–613 (2014)

    Article  Google Scholar 

  7. Floridi, L.: Big data and their epistemological challenge. Philos. Technol. 25(4), 435–437 (2012)

    Article  Google Scholar 

  8. Glick, P., Fiske, S.T.: The ambivalent sexism inventory: differentiating hostile and benevolent sexism. J. Pers. Soc. Psychol. 70(3), 491 (1996)

    Article  Google Scholar 

  9. Hair, J.F., Ringle, C.M., Sarstedt, M.: PLS-SEM: indeed a silver bullet. J. Mark. Theory Pract. 19(2), 139–152 (2011)

    Article  Google Scholar 

  10. Harary, F., Palmer, E.M.: Graphical Enumeration. Elsevier (2014)

    Google Scholar 

  11. Hu, L., Bentler, P.M.: Cutoff criteria for fit indexes in covariance structure analysis: conventional criteria versus new alternatives. Struct. Equ. Model.: Multidiscip. J. 6(1), 1–55 (1999)

    Article  Google Scholar 

  12. James, G., Witten, D., Hastie, T., Tibshirani, R.: An Introduction to Statistical Learning, vol. 112. Springer, New York (2013). https://doi.org/10.1007/978-1-4614-7138-7

    Book  MATH  Google Scholar 

  13. Jöreskog, K.G.: Structural analysis of covariance and correlation matrices. Psychometrika 43(4), 443–477 (1978)

    Article  MathSciNet  Google Scholar 

  14. Jöreskog, K.G.: Lisrel. Wiley Online Library (2006)

    Google Scholar 

  15. Kaplan, D.: Structural Equation Modeling: Foundations and Extensions, vol. 10. Sage Publications, Newbury Park (2008)

    MATH  Google Scholar 

  16. Kitchin, R.: Big data, new epistemologies and paradigm shifts. Big Data Soc. 1(1), 2053951714528481 (2014)

    Article  Google Scholar 

  17. Lai, K., et al.: Assessing model similarity in structural equation modeling. Struct. Equ. Model.: Multidiscip. J. 23(4), 491–506 (2016)

    Article  MathSciNet  Google Scholar 

  18. MacCallum, R.C., Wegener, D.T., Uchino, B.N., Fabrigar, L.R.: The problem of equivalent models in applications of covariance structure analysis. Psychol. Bull. 114(1), 185 (1993)

    Article  Google Scholar 

  19. Marcén, A.C., Pérez, F., Cetina, C.: Ontological evolutionary encoding to bridge machine learning and conceptual models: approach and industrial evaluation. In: Mayr, H.C., Guizzardi, G., Ma, H., Pastor, O. (eds.) ER 2017. LNCS, vol. 10650, pp. 491–505. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69904-2_37

    Chapter  Google Scholar 

  20. Meseguer-Artola, A., Aibar, E., Lladós, J., Minguillón, J., Lerga, M.: Factors that influence the teaching use of wikipedia in higher education. J. Assoc. Inf. Sci. Technol. 67(5), 1224–1232 (2016)

    Article  Google Scholar 

  21. Nalchigar, S., Yu, E., Ramani, R.: A conceptual modeling framework for business analytics. In: Comyn-Wattiau, I., Tanaka, K., Song, I.-Y., Yamamoto, S., Saeki, M. (eds.) ER 2016. LNCS, vol. 9974, pp. 35–49. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46397-1_3

    Chapter  Google Scholar 

  22. Popper, K.: The Logic of Scientific Discovery. Routledge, New York (2005)

    Book  Google Scholar 

  23. Prensky, M.: H. sapiens digital: from digital immigrants and digital natives to digital wisdom. Innov. J. Online Educ. 5(3), 1 (2009)

    Google Scholar 

  24. Rodgers, J.L.: The epistemology of mathematical and statistical modeling: a quiet methodological revolution. Am. Psychol. 65(1), 1 (2010)

    Article  Google Scholar 

  25. Rosseel, Y.: Lavaan: an R package for structural equation modeling and more. version 0.5-12 (beta). J. Stat. Softw. 48(2), 1–36 (2012)

    Article  Google Scholar 

  26. Schölkopf, B., Janzing, D., Peters, J., Sgouritsa, E., Zhang, K., Mooij, J.: On causal and anticausal learning. arXiv preprint arXiv:1206.6471 (2012)

  27. Sibley, C.G., Perry, R.: An opposing process model of benevolent sexism. Sex Roles 62(7–8), 438–452 (2010)

    Article  Google Scholar 

  28. Silver, D., et al.: Mastering the game of go without human knowledge. Nature 550(7676), 354 (2017)

    Article  Google Scholar 

  29. Sunkle, S., Kholkar, D., Kulkarni, V.: Comparison and synergy between fact-orientation and relation extraction for domain model generation in regulatory compliance. In: Comyn-Wattiau, I., Tanaka, K., Song, I.-Y., Yamamoto, S., Saeki, M. (eds.) ER 2016. LNCS, vol. 9974, pp. 381–395. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46397-1_29

    Chapter  Google Scholar 

  30. Verniers, C., Vala, J.: Justifying gender discrimination in the workplace: the mediating role of motherhood myths. PloS one 13(1), e0190657 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iaroslav Shcherbatyi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Maass, W., Shcherbatyi, I. (2018). Inductive Discovery by Machine Learning for Identification of Structural Models. In: Trujillo, J., et al. Conceptual Modeling. ER 2018. Lecture Notes in Computer Science(), vol 11157. Springer, Cham. https://doi.org/10.1007/978-3-030-00847-5_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00847-5_40

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00846-8

  • Online ISBN: 978-3-030-00847-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics