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Abstract. Robust and accurate alignment of multimodal medical im-
ages is a very challenging task, which however is very useful for many
clinical applications. For example, magnetic resonance (MR) and tran-
srectal ultrasound (TRUS) image registration is a critical component
in MR-TRUS fusion guided prostate interventions. However, due to the
huge difference between the image appearances and the large variation
in image correspondence, MR-TRUS image registration is a very chal-
lenging problem. In this paper, an adversarial image registration (AIR)
framework is proposed. By training two deep neural networks simulta-
neously, one being a generator and the other being a discriminator, we
can obtain not only a network for image registration, but also a met-
ric network which can help evaluate the quality of image registration.
The developed AIR-net is then evaluated using clinical datasets acquired
through image-fusion guided prostate biopsy procedures and promising
results are demonstrated.

1 Introduction

Prostate cancer is one of the leading causes of cancer death among men in the
western world. The fusion of magnetic resonance (MR) and transrectal ultra-
sound (TRUS) images, benefited by the good sensitivity and specificity of multi-
parametric MR (mpMR) on identifying suspicious prostate cancer regions, has
been demonstrated improving the biopsy yield by as much as 30% [1]. For a fusion
system to work effectively, accurate registration of different imaging modalities
is critical. However, multi-modality image registration is a very challenging task,
as it is hard to define a robust image similarity metric [2]. The registration of MR
and TRUS is more difficult due to the noisy appearance of ultrasound images
and the inhomogeneous imaging resolutions between MR and TRUS.

With the rapid advancement of deep learning technology in the past several
years, a number of new image registration methods based on deep learning have
been proposed, which gained better performance compared to the traditional
methods. The early deep learning based image registration methods still follow
the classical framework of iteratively optimizing over certain similarity metric
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Fig. 1: Overall structure of the proposed AIR-net registration framework.

through updating the transformation. Deep learning was initially only used for
acquiring a better similarity metric. For example, Cheng et al. [3] used a multi-
layer perceptron network to learn the correspondence between a pair of images.
Simonovsky et al. [4] developed a convolutional neural network (CNN) based
similarity learning network and embedded it into an image registration frame-
work for multi-modal image alignment. Compared with the traditional manu-
ally defined similarity measures like mutual information, deep learning similarity
metric uses huge number of automatically extracted features to achieve better
performance. Its output value can also provide a good sense of the registration
quality due to the pre-defined value range.

With more powerful CNN being designed to extract more representative im-
age features, Miao et al. [5] proposed a CNN based method to directly estimate
the transformation parameters instead of using an iterative process. Therefore,
the registration can be performed very fast and efficient. De Vos et al. [6] fur-
ther developed an end-to-end unsupervised registration method, which however
is limited to same modality image registration. Recently, Hu et al. [7] proposed a
label-driven registration method by using CNN to evaluate not only image pairs
but also the object label pairs for MR-TRUS image registration. Cao et al. [8]
developed a deep learning method for inter-modality image registration without
using ground truth but supervised by intra-modality similarity. However, such
methods lack a direct feedback of registration quality, which can be important
for image-fusion guided interventions.

Inspired by the previous works, in this paper, we propose a multi-modality
image registration method based on the generative adversarial network (GAN)
framework [9] with simultaneously trained CNNs for transformation parameter
estimation and registration quality evaluation. The proposed adversarial image
registration network (AIR-net) consists of two sub-networks, registration gener-
ator and registration discriminator, which are trained in the adversarial fashion.
An overview of the proposed AIR-net is shown in Fig. 1.



In the proposed method, the registration generator network (G) directly
estimates transformation parameters between the input image pair. The image
resampler then uses either the estimated transformation Test or the ground truth
transformation Tgt to interpolate the input moving image to get a new resampled
moving image. The registration discriminator (D) tries to tell if its input image
pair is aligned using transformation Test or Tgt. As the training goes on, both
G and D are iteratively updated. The feedback of D will be used to improve
G, so that eventually G will be well trained to generate transformations close
to Tgt to pass the test of D.

Our work in this paper has two major contributions. First, the proposed
AIR-net not only estimates transformation parameters directly with an efficient
feed-forward pass of G-network but also evaluates the quality of the estimated
registration with the D-network, which makes it very suitable for applications
like image-guided intervention. Second, the AIR-net is trained in an end-to-end
fashion, where both G and D become available once the training is completed.
Our experimental results demonstrate the effectiveness of the proposed approach.

The rest of this paper is organized as follows. Section 2 gives details of the
proposed AIR-net. The network training and experimental results are presented
in Section 3. Finally, Section 4 draws conclusions.

2 Adversarial Image Registration (AIR)

2.1 Generator and Discriminator Networks

In our work, the G- and D-networks are designed using CNNs due to their strong
capability for image feature extraction and compact representation. The MR
and TRUS volumes in our work are 3D data. However, to build deep CNNs to
effectively deal with the complex nature of this challenging multi-modality image
registration problem, we consider each 3D volume as multi-channel 2D image.
In this way, much deeper neural networks can be trained on a single GPU with
limited memory compared with using 3D CNNs. We also experimented with 3D
CNNs with shallower structures, and our results showed that deeper 2D CNNs
indeed performed better.

The structure of the designed G-network is as follows. It first starts with
a dilated convolutional layer, aka atrous convolution, to enlarge the perceptive
field. The layer has 128 filters with dilation of 2. All the convolutional filters in
the designed networks are in the size of 3×3, if not explicitly noted. Each con-
volutional layer is followed by a rectified linear unit (ReLU) layer as activation.
The first convolutional layer is followed by two more convolutional layers with
128 filters and stride of 2 to reduce the output tensor size. After that, a residual
block containing 3 convolutional layers with residual connections as in [10] is
used to have both high- and low-level features. The number of filters remains to
be 128. We then used a 1×1 convolutional layer to decrease the number of filters
from 128 to 8, in order to reduce the number of parameters. Two fully connected
layers are then used to get the final output. The first fully connected layer has



256 hidden units, while the number of the units for the second one is equal to
the transformation parameters, e.g. 6 for 3D rigid transformation and 12 for
3D affine transformation. There is no activation function for the output layer
of G-network. The D-network has almost identical structure as the G-network,
except that the last fully connected layer has only one output unit with Sigmoid
activation function, which is for evaluating the performance of registration.

The input to the networks is in the form of “two-channel” images, which are
obtained by concatenating the MR and TRUS image pair. The choice is made
based on the extensive experiments performed in [11], where CNN was used to
compare image patches from natural images. We believe that the conclusion also
applies to medical image registration, as confirmed by the work of Simonovsky
et al. [4].

2.2 Adversarial Training

The designed networks can then be trained in the adversarial fashion. However,
as it is known that the original GAN [9] can be tricky to train due to the
unstable loss, the improved version of Wasserstein GAN (WGAN) by Arjovsky
et al. [12] is adopted in our work. To make the network quickly converge to
generate good image registrations, perturbed transformations are also used to
compute part of the loss so the networks can recognize poor registrations. Let If
and Im denote the fixed image and the moving image, respectively, corresponding
to MR image and TRUS image in this application. Assume that Im has been
properly registered to If by using the ground truth transformation. Then the
discriminator loss L(D) is defined as

L(D) = −ET∼pgt(T )[D(If , Im)] + ET∼pz(T )[D(If , T (Im)], (1)

where ET∼pgt(T )[D(If , Im)] denotes the error expectation of the discriminator
given a well aligned MR-TRUS image pair and ET∼pz(T )[D(If , T (Im)] defines
the error expectation of the discriminator given a randomly perturbed transfor-
mation. The generator loss L(G) is defined as

L(G) = ET∼pz(T )[1−D(If , Test(T (Im))) + α‖Test − T−1‖2], (2)

where Test is the registration transform generated by the generator G(If , T (Im))
and ‖Test − T−1‖2 is the Euclidean distance between the estimated transfor-
mation and the randomly created transformation. The latter is weighted by a
positive weighting parameter α.

For WGAN, after each round of training, the parameters of the D-network
needs to be clipped for stability. The clipping parameter was set to be 0.01 in
our work. The G-network is trained once the D-network is updated twice, i.e.
the parameter of critic is set to be 2. It is worth noting that although we used
the square of difference between the transformation parameters as part of the
generator loss, the AIR-net can still be trained without it. The training process
just takes longer and the parameters need to be tuned carefully.



3 Experiments

The presented method is implemented in Python based on the PyTorch deep
learning library [13]. To realize an end-to-end training of the network with re-
sampling component in between of the two networks, the technique of spatial
transform network proposed by Jaderberg et al. [14] is used.

3.1 Materials and Training

In our work, a total 763 sets of data have been used for experiments, with 679
from the National Institutes of Health and the other 84 from the Mount Sinai
Hospital. The data were acquired from MR-TRUS fusion-guided prostate cancer
biopsy procedures using FDA approved UroNav device (In Vivo, FL, USA). Each
case contains a T2-weighted MR volume, a 3D TRUS volume reconstructed from
2D ultrasound sweep of the prostate under electro-magnetic tracking. Each MR
volume has 512×512×26 voxels with the resolution of 0.3mm×0.3mm×3mm.
The ultrasound volumes have varying sizes and resolutions, which are determined
by the ultrasound scanning parameters used during the procedure. The data were
randomly split into training and validation sets with a ratio of 5:1, resulting in
636 cases for training and 127 cases for validation.

The MR and TRUS volumes are sampled into the size of 256×256 multi-
channel images. The perturbed transformation parameters are in the following
ranges: rotation is in [-25,25] degrees and translation is in [-5,5]mm.

The developed network is trained and tested on a workstation equipped with
a NVIDIA Titan Xp GPU. It take about 8 hours for the network to get trained
on our dataset. When testing on an image pair, it runs very fast, using less than
100ms for estimating a transformation. We then can use both the generator and
discriminator networks efficiently to iteratively update the image registration
until it converges.

3.2 Experimental Results

With the trained networks, performance evaluation was then carried out. For
each evaluation case, an initial transformation was randomly created in the same
way as the training data by perturbing the ground truth transformation. The
target registration error (TRE) and the discriminator scores (D-Scores) are then
computed on the initial registration. The initial poorly aligned image pairs are
input into the G-network for registration and a new set of transformation pa-
rameters are generated. The TRUS volume is then resampled by using the new
registration and put together with the MR volume to form a new pair. TRE of
the new registration will be computed and the new pair will also be fed into the
D-network for scoring.

In our current experiment, we limit the randomly generated transformation
to be in 2D, i.e. only rotation and translations in the axial view with 3 degrees
of freedom. We are extending the method to more general scenarios. Fig. 2 first
shows some example registration results. It can be seen that starting from some
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Fig. 2: Example registration results from 3 different cases. MR images are shown
in gray level and corresponding TRUS images are superimposed in pseudo color.
The columns from left to right are as follows. Left : Images aligned under a
randomly generated transform before registration; Middle: Images aligned using
the generated transformation after registration; Right : Images aligned using the
manually performed registration by experts, which is considered as ground truth.
The discriminator score for each pair of aligned images is shown in yellow at the
lower right corner of the image.

randomly perturbed registrations, the developed method was able to put the
images back into alignment and get very close to the ground truth registration.
The improved image alignment is also reflected by the D-Scores. As the regis-
tration quality improves, the D-scores also increase. This suggests that both the
generator and discriminator networks are working effectively.

The registration performance of the developed AIR-net was then quantita-
tively evaluated and the results are given in Fig. 3. The evaluation was performed
using both TRE and D-Scores given by the D-network, respectively. It can be
seen from Fig. 3(a) that the TRE dropped significantly (p <0.01) after regis-
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Fig. 3: Evaluation of the AIR-net based image registration performance measured
by TRE and D-Scores.

tration, with mean TRE being decreased to 3.48mm from 6.11mm. in the same
time, the D-scores are significantly (p <0.01) improved after image registration,
which shows very good correlation with TRE. Therefore, the results demonstrate
that the G-network is able to generate improved registration with significantly
smaller registration error and the D-network is able to tell good registration from
poor registration.

4 Conclusions

In this paper, a new multi-modality image registration method of AIR-net based
on the GAN framework is presented. To the best of our knowledge, this is the first
work using GAN for multi-modality medical image registration. The proposed
method provides not only a registration estimator, but also a quality evaluator
in the same time, which can be used for quality check to detect potential reg-
istration failure. Being a major contribution of this work, it can be very useful
in clinical practice to warn physicians about potential problems in image-fusion
guided procedures. More evaluation will be performed in our future work against
other state-of-the-art methods on registration performance.
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