N

N
N

HAL

open science

First-Half Index Base For Querying Data Cube
Viet Phan-Luong

» To cite this version:

Viet Phan-Luong. First-Half Index Base For Querying Data Cube. Intelligent Systems Conference

2018, Sep 2018, London, United Kingdom. 10.1007/978-3-030-01054-6_ 78 . hal-02081549

HAL Id: hal-02081549
https://hal.science/hal-02081549
Submitted on 27 Mar 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-02081549
https://hal.archives-ouvertes.fr

First-Half Index Base For Querying Data Cube

Viet Phan-Luong
Aix-Marseille Univ, Universié de Toulon, CNRS, LIS, Marseille, France
Equipe BDA
Email: viet.phanluong@lis-lab.fr

Abstract—Given a relational fact table R, we call a base of the fact table dimension scheme. The computation can saver
data cubes onR a structure that allows to query the data the complete lattice in a top-down or bottom-up manner.
cubes with any aggregate function. This work presents a compact To create cuboids, the sort operation is used to reorganize

base of data cubes, called the first-half index base, with itst les: tupl d d th te f .
implementation, and the method for querying the data cubes uples: tuples are grouped an e aggregate functions are

using this base. Through experiments on real datasets, we showapplied to the measures. To optimize the storage space, only
how the first-half index base resolves efficiently the main data aggregated tuples with aggregated measures are diremtbdst

cube issues, i.e., the storage space and the query response timeon disk. Non-aggregated tuples are not stored but repesent

Keywords-data warehouse; data cube; data mining; by references to the stored tuples where the non aggregated
tuples are originated or to tuples in the fact table. The work
l. INTRODUCTION [23] implemented many of these approaches and reported

The concept of data cube offers important interests tbhe experimental results on real and synthetic datasets. It
business intelligence as it provides aggregate views ad dahown that The Totally-Redundant-Segment BottomUpCube
over multiple combinations of dimensions. Those aggregapproach (TRS-BUC) nearly dominated its competitors in
views can help managers to make appropriate decision in th&li aspects of the data cube problem: fast computation of
business. In fact, a data cube built on a relational facetalth a fully materialized cube in compressed form, incremewntall
n dimensions and a measuid for an aggregate function updateable, and quick query response time.
can be seen as the set of the Structured Query Language (SQLl)he work [12][13] presents a simple and reduced represen-
group-by queries over the power set of thedimensions, tation that allows to compute efficiently the entire dataesib
whereg is applied to each group of measurk& The result for any aggregate functions. The main idea in this work is
of such a SQL group-by query is an aggregate view, calledth|at among the cuboids of a data cube, there are ones that can
cuboid. be easily and rapidly get from the others, with no important

Though the concept is simple, there are many importatemputing time. These others are computed and stored on
issues in computation time and storage space, because ofdis& using an integrated binary search prefix tree structure
exponential number of the cuboids and because of the big sieae compact representation and efficient search. In cantoas
of large datasets. To make data cube query available in ©nlihe approaches that compute all tuples of the data cube with
Analytical Processing (OLAP), most solutions to reduce theptimization in computing time and storage space, the work
time computation are to precompute the data cube and stfk8] computes and represents only the cuboids of a half af dat
it on disk. However, the storage space can be tremendouscube, called the last-half data cube. It follows a specipt to

To tackle these issues, there exist many different appesachdown approach that does not traverse the complete lattice of
In [9], an I/O-efficient technique based upon a multiresolut the dimension sub-schemes: from each cuboid in the lakt-hal
wavelet decomposition is used to build an approximate addta cube, over a dimension scheMewe can compute, with
space-efficient representation of data cubes. Naturdily, tho important time cost, a non-stored cuboid over a dimension
response to an OLAP query is also approximate. The icebeugpb-schemeY” C X, using an operation called aggregate
data cube approach [8][10][20] [22] does not compute ghrojection. The set of those non-stored cuboids is called th
aggregates, but only those above certain thresholds. Thist-half data cube.
approach does not allow all data cube queries because datiloreover, the above proposed representation is not only for
cubes are partially computed. a specific aggregate function, nor for a specific measure, but

The other approaches search to represent the entire datdlows for computing all cuboids with any measure and any
cube with efficient methods for computation and storageygregate function. In fact, each cuboid in the represientat
[1][2][7][18]. The computing time and storage space ars an index: a set of rowids that reference to tuples in the fac
optimized based on equivalence relations defined on aggredgable.
functions [11] [19] or on the concept of closed itemsets in In the present work, we extend [13] in a somehow contrast
frequent itemset mining [17] or by reducing redundanciadirection, by studying a more compact and efficient represen
between tuples in cuboids, using tuple references [2] IBl][tation that allows to speed up the computation of data cube
[16][19][21][23]. In these approaches, the computation gueries. The contribution consists of:
usually organized on the complete lattice of sub-schemes of- A compact representation based on the bottom-up com-

putation, and

To improve the computing time and the storage space of the

— The methods for computing the data cube queries bagtata cube representation, we shall follow an approach ¢hat i

on this compact representation.

somehow inverse to the approach proposed in [12][13]. lddee

The efficiency of the representation in run time and storage the new approach, the first-half data cube is computed and
space is shown through experiments on four real datasets.stored on disk. It forms a base to compute all data cube querie
The paper is organized as follows. Section 2 recalls the mator this, we define a data structure and some algorithms.
concepts in [13], in particular, the concept of the firstfhal i)
and the last-half data cubes. Section 3 presents the cencépt Pata indexes on an attribute
of the new representation for querying data cubes. Section Data on a dimension (an attribute) of the fact tables
presents the methods for computing the group-by query witidexed using the search binary tree structure. This sireict
aggregate functions, based on this representation. &ebtiohas following fields:
reports the experimental results and ends with discussions— data : to contain an attributed value,

Finally, conclusion and further work are in Section 6.

Il. PRELIMINARY

— ltid : to contain the list of rowids associated with the
attributed value,
— Isib andrsib: the left and the right sub-trees.

This section recalls the main concepts presented in [13]. AThe structure is organized for searching on the data field.
data cube over a dimension schetieis the set of cuboids e call a tree with this structure attribute index tree

built over all subsets of, that is the power set aR. As in

To insert attributed values into an attribute index tree, we

most of existing work, dimensions (attributes) are encaded yse the algorithminsData2Attindex

integer, let us consideR = {1,2,...,n}, n > 1. The power
set of R can be recursively defined as follows.
1) The power set oRy = 0 (the empty set) i = {0}.
2) Forn > 1, the power set o?, = {1,2,...,n} can be
recursively defined as follows:

Po=P, U{Xu{n}|XeP_1} (1)

P, is called thefirst-half power setof R, and the
second operand a?,,, i.e., {XU{n} | X € P,_1}, the
last-half power sebf R,,.

Example 1: Forn = 3, R3 = {1, 2,3}, we have:

Po=A{0}, Pi={0,{1}}, P> ={0,{1},{2},{1,2}},

P = {(Dv {1}’ {Q}a {132}7 {3}’ {173}a {2,3}, {17233}}

The first-half power set ofS; is P, = {0, {1},{2},
{1,2}} and the last-half power set ofS; is
{{3},{1,3},{2,3},{1,2,3}}, got by adding3 to each
element of .

Algorithm InsData2AttIndex:
Input: An attributed valueval, the rowid of a tuple that
containsval, and an attribute index trek.

Output: The attribute index treé” updated.
Method:

if (P NULL) {
Create P with P.data = val;
Create P.Itid with the 1st el enent
P.Isib = NULL and P.rsib = NULL;

row d;
else if P.data > val {
insert val and rowid into P.Isib;

else if P.data < val {
insert val and rowid into P.rsib);

el se append rowid to P.Itid);

Such attribute index trees (and further index trees) aredto

The set of all cuboids over the schemes in the first-h&h disk. As each index is a partition of the set of all rowids of
power set ofR is called thefirst-half data cubeand the set of T, it is important to note that, to optimize the storage spaice
all cuboids over the schemes in the last-half power seR of these indexes, we save only the partitions of rowids and omit

is called thelast-half data cube

In [12][13], the last-half data cube is precomputed an
stored on disks and data cube queries are computed base

the attributed values.

Juples indexes on a dimension scheme

on the last-half data cube. However, it proposed a moreGiven a sub-schemgA,, ..., Ay} (for 1 < i < n, 1 <
general framework: instead of computing for a data cube for/s < n) of the dimension schemg of the fact tablel’, we

particular aggregate function, it computes and storesuples
indexes over the schemes in the last-half power set,cind

assume that the index ovérly, ..., A1} is already created
for all tuples ofT'. As the base, the indexes over the schemes

data cube queries for any aggregate function are computdd, ..., {n} are created using the InsData2Attindex algorithm.

based on these indexes.
From now on we consider a relational fact tafilewith a

Let P be an element of the index ovér, ..., A,_1}. That
is, P is the list of all rowids of the tuples that have the same

dimension schem& = {1,2,...,n} and a set of measuresvalue on{Ay, ..., A;_1}; these tuples may be different o..

M={n+1,n+2,...,n+k}.

IIl. THE FIRSTFHALF INDEX BASE FOR DATA CUBES

In the present work, we follow the view of data cube akput: the fact tablel” and a dimension schenfely, ...

To create the index of tuples ofAy,..., Ay}, we use the
algorithm T'upleIndezx.

Algorithm Tuplelndex:

aAk}-

the composition of two parts: the last-half and the firsf:halOutput: the index of tuples ofl” over {4, ..., Ax}.

Method: D. First-half index base representation for data cube

;' 'C:Eet t heht :;p! € L Ede?(gver {Al;i“’A’“X} Based on the tuple indexes over the schemes in the first-half
- For eac in the index on {Ai, .., A1} power set of the fact table dimension scheme, we propose

2 1 do Initialize a tree Trp to empty: a representation, called tljfiafst—half. index basdor query-
2 2 For each rowid in P do ing data cube oril". The first-half index base is the triple
2.2.1 Let wal be the attributed val ue (T, RS, FHIndex), where

on A of the tuple at rowid in T; — RS is the return ofGenF HIndex(T) and
2.2.2 Insert wal and rowid to Trp using — FHlIndex is the set of tuple indexes generated by
2.2.2 the I nsData2Attlndex al gorithm GenF HIndex(T).
2.2.3 done; The above elements are stored on disks. For efficient com-
2.3 Wite the tree Trp to disk; puting, the list of dimension schem&sS and the fact tablg”
3. done; are retrieved in the main memory. The fact tallés stored

To access to the tuple at the row identifiedsleyvid in the in a list of blocks of fixed size as explained previously.
fact tableT’, we organize the data as follows. The fact table
T is loaded into a list of blocks in the main memory. EachV: DATA CUBE QUERY BASED ON THE FIRSTHALF INDEX
block is an array of fixed siz&é. To determine the number of REPRESENTATION
the block that contains the tuple atwid and the rang of the ~ This section explains how we can compute the queries with

tuple in the block: the aggregate functions MAX, COUNT, SUM, AVERAGE,
blocknumber = rowid | k and VARIANCE, based on the first-half index base.
rang = rowid % k, A. Query on the first-half cube

where/ and% denote respectively the quotient and the rest

of the division on integers. To compute a cuboid on an aggregate functigrover a

schemeF in the first-half data cube, we access to the tuple
) _) index overF, and for each partitio® of rowids of this index:
C. Creating the first-half index base — Let rowidl be the firstrowid in P and lett be the tuple

The indexes of tuples over the schemes in the first-h&lf rowidl.

power set of the dimension scheme of the fact tablare ~ — Lett(F) be the restriction of on F,
generated by the algorith@enIndex FH. — Let M be the set of the measures that we can get from

Algorithm GenFHIndex: Tfot,_\anlmszds np te function to M, let g(M) be th
Input: 7" and its dimension schemfd, ..., n}. . pply the aggregate function to M let g(M) be the

. : result,
Output: The tuple indexes for the first-half data cube over Savet(F) and g(M) to disk.

{L,...,n} and their dimension sub-schemes. For computing the function VARIANCE, for each partition

Method: . .
Let RS be a list of dimension sub-schenes, P, we use a temporary list to store the measures in the tuples
initially enpty; at all rowids € P.

1. Use InsData2AttIndexr t0 generate n indexes

over schemes {1},...,{n} and append B. Query on the last-half cube

successively these schenes to RS. The algorithm QueryLH computes a cuboid in the last-
2. Set a pointer psch to the 1st scheme in RS half data cube, over a schenig based on the tuple index
and let P be the pointed scheme over F = L — {n} wheren is the last attribute of the

(at this point, Pis {1}); dimension scheme. This tuple index is in the first-half index

3. len=1;
4. while len<n and psch # NULL do base(_T’ RS, FHIndex).
4.1. Let lastAtt be the last attribute of P Algorithm QueryLH:
4.2. For each attribute i from1 to n—1 Input: A dimension sub-schemé = {Aj,..., Ay, n}, an
such that i> lastAtt do aggregate functiog, and (7', RS, F H Index).
4.2.2 Append i to P to create a new schene Output: the cuboid onl" and g, over L.
nsc and append nsc to RS, Method:
4.2.4 Use TupleIndex to generate the tuple 1. Get the tuple index over F = L — {n} from
i ndex over nsc; FHIndez;
4.2.5 Save the tuple index to disk; 2. For each partition P in the index over F do
4.2.6 done; 2.1 Initialize a tree Trp to enpty;
4.3 Set psch to the next elenment in RS and 2.2 For each rowid in P do
len = length(nsc); 2.2.1 Let wval be the value on attribute n
4. 4 done; of the tuple at rowid in T,

2.2.2 Insert wal and rowid to Trp
5. Return RS.) usi ng | nsDat a2Att | ndex;
Each scheme S is associated with the information thaty 2. 3 done:

allows to identify the corresponding tuple index stored mkd 2.3 Let (L) be the restriction on L of the

TABLE |

tUS' e t at the rowid at the root of Trp, RESULTS ON COMPUTING FIRST-HALF BASE
and,
and g(Trp) the result of the application Datasets Run time Memory use Storage space
of g to the set of neasures in all CoveType 138s 90 Mo 2 Go
tuples at the rowids in Trp; SEP85L 127s 170 Mo 1.8 Go
2.4 Save t(F) and g(Trp) to disk; STCO-... 141s 125 Mo 2.2 Go
2.5 done; OnlineRetail 96s 80 Mo 1.4 Go

V. EXPERIMENTAL RESULTS AND DISCUSSIONS

The first-half index base for data cube query is implement . .
in C and experimented on a laptop with 8 GB memor;%? On query with aggrega_te functions]
Intel Core i5-3320 CPU @ 2.60 GHz x 4, running Ubuntu 1he group-by SQL queries are computed based on the first-
12.04 LTS. The experimentation is done on four real datasé@lf index base. The following aggregate functions MAX,
CovType [3], SEPS85L [4], STCO-MR2018L_ MO [5] and COU.NT, SUM, AVG, and_ VAR|ANCE are experlmented. The
OnlineRetail[6] queries are in the following simple form:
CovType is a dataset of forest cover-types. It has 581,082| ect Lj st Of Di mensi ons, f(m)
tuples on ten dimensions with cardinality as followsgr om Fact Tabl e
Horizontal-Distance-To-Fire-Points (5,827), Horizdata g oup by Li st OF Di nensi ons;
Distance-To-Roadways (5,785), Elevation (1,978), Vatftic .
Distance-To-Hydrology ~ (700), Horizontal-Distance-ToFor each Qataset and each half of _the_correspondlng_data cube
Hydrology (551), Aspect (361), Hillshade-3pm (255)'Ehe query is computed for all cuboids in the half. For_mstanc
Hillshade-9am (207), Hillshade-Noon (185), and Slope (67)0" CovType, we run the above query for 512 cuboids of the
SEPSSL is a weather dataset. It has 1,015,367 tuples /8at-half and 512 cuboids of the first-half.
nine dimensions with cardinality as follows: Station-Ig0@7), Tables Il and Il show the total time in seconds for comput-
Longitude (352), Solar-Altitude (179), Latitude (152)eBent- g the aggregate query for the five aggregate functions, for
Weather (101), Day (30), Weather-Change-Code (10), Hodj cuboids in the first-half data_ cube_s and in the Iast—hgtad
(8), and Brightness (2). cubes, respectively. The total times include all compuging
STCO-MR2010AL_MO is a census dataset on populatioHO time, in particular, the time to write the results to dislor
of Alabama through Missouri in 2010, with 640,586 tuple¥stance, for the aggregate function SUM, the total time for
over ten integer and categorical attributes. After tramsfog computing 512 cuboids in the first-half data cube of dataset
categorical attributes (STATENAME and CTYNAME), theCovType is 237 seconds (Table Il). The last column (MEAN)
dataset is reorganized in decreasing order of cardinalitiso represents the average of the total time on the five aggregate
attributes as follows: RESPOP (9,953), CTYNAME (1,049)unctions.

COUNTY (189), IMPRACE (31), STATE (26), STATENAME TABLE I
(26), AGEGRP (7), SEX (2), ORIGIN (2), SUMLEV (1). TOTAL TIME FOR COMPUTING AGGREGATE QUERY ON
OnlineRetail is a data set that contains the transactions FIRST-HALF CUBES

occurring between 01/12/2010 and 09/12/2011 for a UK-based

and registered non-store online retail. This dataset hasnn DATASETS || MAX COUNT SUM AVG VAR MEAN

plete data, integer and categorical attributes. Afterfyien, Covelype [2355 215s 23/s 3025 288 2504 s
i . ; o . SEP85L 140s 118s 141s 169s 1705 147.6 s

transform!ng categorical gttnbutes into integer attrétsy for sTCO-... 144s 1265 144s 170s 1765 152 s

the experiments, we retain 393,127 complete data tuples an@hlineRetail || 117s 106s 117s 145s 1445 1258's

the following ten dimensions ordered in their cardinality a

follows: CustomerID (4,331), StockCode (3,610), Uniteric

(368), Quantity (298), Minute (60), Country (37), Day (31), TABLE IlI

Hour (15), Month(12), and Year (2). TOTAL TIME FOR COMPUTING AGGREGATE QUERY ON

o _ _ LAST-HALF CUBES
A. On building the first-half index base of data cube
Table | reports the run time and the memory use fOrpaTasETS || MAX COUNT SUM AVG VAR | MEAN

computing the first-half index bases and their store space. T CoveType 309s 279s 364s 383s 3735 3416s
this table SEP85L 193s 169s 191s 224s 2375 2028 s

. I , , STCO-... 184s 168s 184s 212s 228 1952s
— the term “Run time” means the time (in seconds) from thegineretail || 150s 1465 158s 180s 1835 163.4 s

start of the program until the first-half index base is cortglle
built, including the time to read/write input/output files.

— the term “Memory use” means the maximal space of the Table IV shows the average time in seconds to compute
main memory allocated to the program, from the start untihe response to an aggregate query. The data in this table
the first-half index base is completely built. is computed based on the data in Tables Il and Ill. For

—the term “Storage space” means the volume in mega bytsch half of a data cube, the average time is calculated by
to store the first-half index base on disks. dividing the total time by the number of cuboids in the half.

For instance, for the first-half data cube of CoveType, tHg and 3. In each graph, the three columns, from left to right,
average query response time for SUM287s/512 = 0.46 represent respectively the results of the TRS-BUC methed, t
second, and for the five aggregate functions the averdgset-half data cube representation, and the first-halfxrmese

query response time i255.4s/512 = 0.50 second. For representation.
the entire data cube, the average query response time for
SUM is (237s + 364s)/1024 = 0.59 second, and for the TABLE V
. i . . MAIN RESULTS WITH VIEWS ON PREVIOUS WORK
five aggregate functions the average query response time is
(255.4s + 341.6s)/1024 = 0.58 second. TRS-BUC
Datasets | Construction time Storage space avg QRT
TABLE IV CoveType 300s 0.4 Gb 0.7s
AVG RESPONSE TIMES OF AGGREGATE QUERY SEP85L 1150s 1.2 Gb 05s
LAST-HALF CUBE REPRESENTATION
Datasets Run time Storage space avg QRT
ON FIRST-HALF CUBES CoveType 1018s 7 Gb 0.93s
DATASETS || MAX COUNT SUM AVG VAR MEAN SEP85L 444s 2.8 Gb 0.74s
CoveType 0.46 0.42 046 059 05§ 0.50 FIRST-HALF INDEX BASE
SEP85L 0.55 0.46 0.55 0.66 0.6| 0.58 Datasets Run time Storage space avg QRT
STCO-... 0.28 0.25 028 0.33 034 0.30 CoveType 138s 2 Gb 0.58s
OnlineRetail || 0.23 0.21 023 028 024 0.25 SEP85L 127s 1.8 Gb 0.68 s

ON LAST-HALF CUBES
DATASETS MAX COUNT SUM AVG VAR MEAN
CoveType 0.60 0.54 0.71 0.75 0.73] 0.63

OnlineRetail 0.26 0.25 0.27 0.32 0.33] 0.28

SEP85L 0.75 0.66 0.75 0.88 0.93] 0.79
STCO-... 0.36 0.33 0.36 0.41 045 0.38 1400
OnlineRetail 0.29 0.29 0.31 0.35 0.3 0.32 1200
ON ENTIRE CUBES
DATASETS MAX COUNT SUM AVG VAR MEAN 1000
CoveType 0.53 0.48 0.59 0.67 0.6§] 0.58 200
SEP85L 0.65 0.56 0.65 0.77 0.80| 0.68
STCO-... 0.32 0.29 0.32 0.37 0.39] 0.34 600
400
200
a

H TRS-BUC
W L-H Indesx
F-H Index

SEPSS5L

C. Discussions

CvType
To get some ideas on the efficiency of the first-half index

base approach, we show in this section the experimentdtsesu Fig. 1. Construction/Run times of three methods in seconds
on CoveType and SEPS85L of the present approach and those

of the last-half data cube representation [13][14] and &f th

very competitive method TRS-BUC [23]. In the discussion, we

shall show (i) the implementation and the reported measores -

the experimentation of the approaches, and (ii) their commo
and different points.

The last-half data cube representation approach is imple-
mented in the same conditions as the first-half index base
approach. After [23], TRS-BUC is implemented on a PC Pen-
tium 4, 2.80 Ghz, running Windows XP. The results reported :
for TRS-BUC are the storage space and the construction time ©
of the representation and the average query response time
(avg QRT) based on the representation. However, [23] did
not precise whether the construction time and the average Fig- 2. Storage space of the representations in giga bytes
query response time include the time to write the result to
disk. In contrast, in [13][14] and the present work, all time The common point between the first-half index base ap-
reported includes the i/o time, in particular, the time tdatevr proach and the last-half data cube representation appieach
the data result (cuboids) to disk. Moreover, in Table V, thiéat the both approaches use a half of the data cube index to
avg QRT of [13][14] and the present work is the average depresent the entire data cube. The different points:
the five aggregate functions MAX, COUNT, SUM, AVG, and a) One uses the first-half and the other uses the last-half.
VARIANCE. In general the volume of the last-half data cube is biggen tha

Table V synthesizes the main experimental results of thiee volume of first-half data cube.
first-half index base with views on the results of the ladf-ha b) The first-half index base approach follows the bottom-
data cube representation and those of the TRS-BUC methad.computation, whereas the last-half data cube repragemta
The data in this table is graphically represented in Figlresapproach follows the top-down computation.

H TRS-BUC
W L-H Index
F-H Indesx

ta - (] &

[¥]

CovType SEPESL

1 as it builds the bases in very reduced time, with respect to
the construction time of TRS-BUC, and offers the avg QRT
that is almost comparable to that of TRS-BUC. Moreover,

- based on the first-half index base, the data cube query can

L index be computed with any measure and any aggregate functions,

Frindex without recomputing the representation.
For further work, we plan to test the first-half index base on
much larger datasets and to study its incremental coniiruct

SERESL REFERENCES

[1] S. Agarwal et al., “On the computation of multidimensiongbeegates”,
Fig. 3. Average query response times of three methods in second Proc. of VLDB’96, pp. 506-521.
[2] V. Harinarayan, A. Rajaraman, and J. Ullman, “Implementiagadcubes
efficiently”, Proc. of SIGMOD’96, pp. 205-216.
. . {3] J. A. Blackard, “The forest covertype dataset”, ftap/f ics.uci.
¢) In the first-half index base approach, as the representat edu/pub/machine-learning-databases/covtype.
of data cube, only the partitions of rowids are stored on,disk] C. Hahn, S. Warren, and J. London, “Edited synoptic clore

; ; _ ports from ships and land stations over the globe”, httgidc
but no data tuples (tuples over dimension sub-schemed)eln t esd.oml.govicdiac/ndps/ndp026b html,

last-half data cube representation approach, both datestugs; 2010 census Modified Race Data Summary File for Countiedaxtea
and the partitions of rowids are stored on disk. through Missouri http://www.census.gov/popest/resaanodified/
By above points b) and c), the reduction of the storagﬁ STCO-MR2010AL_MO.csv.
i

. g . . Online Retail Data Set, UCI Machine Learning Repository
space and the run time to build the first-half index base With pps://archive.ics.uci.edu/mi/datasets/Online+Retai

respect to the storage space and the run time to build the @8t K. A. Ross and D. Srivastava, “Fast computation of spars@ dubes”,
; ; ; . Proc. of VLDB'97, pp. 116-125.

half data cube representation is considerable: on stopmpes [8] Beyer, K.S.. Ramakrishnan, R.: Bottom-up computation cirse and

abOUtﬂ% for CoveType and35% for SEP85L, and on run iceberg cubes, Proc. of ACM Special Interest Group on Mamage of

time, about86% for CoveType and aboutl% for SEP85L. Data (SIGMOD’99), 359-370.

; ; 9] J. S. Vitter, M. Wang, and B. R. lyer, “Data cube approxioat
Thoth these Important reductions, the average querymeepd and histograms via wavelets”, Proc. of Int. Conf. on Informatand

time is c_IearIy improved by the first-half index base. Knowledge Management (CIKM'98), pp. 96-104.
The difference between the above approaches and TR®} J. Han, J. Pei, G. Dong, and K. Wang, “Efficient Computat Iceberg
BUC consists in: Cubes with Complex Measures”, Proc. of ACM SIGMOD’01, pp. 441

. .. 448
— TRS-BUC computes thg entire data cube and OPUMIZ@S) . Lakshmanan, J. Pei, and J. Han, “Quotient cube: Howutarearize
the storage space of tuples: if an aggregate group has oaly on the semantics of a data cube,” Proc. of VLDB'02, pp. 778-789.

le. then th leitselfis n r nlvther ; [12] V. Phan-Luong, “A Simple and Efficient Method for ComputiData
tuple, then the tuple itself is not stored, but only the rooiids Cubes”, Proc. of The 4th Int. Conf. on Communications, Comjmriat

original tuple in the fact table: t_he rowid is called a refeve. _ Networks and Technologies INNOV 2015, pp. 50-55.
The approaches [13][14] optimize the storage by repraesgnti13] V. Phan-Luong, “A Simple Data Cube Representation for
the data cube by a half cube of indexes. Efficient Computing and Updating”, Int. Journal on Advances

. in Intelligent Systems, vol 9 no 3 & 4, 2016, pp. 255-264.
— TRS-BUC computes the representation of the data cube http://www.iariajournals.org/intelligensystems.

built on a specific aggregate function applied to only ori@4] V. Phan-Luong, “Searching Data Cube for Submerging aniging
measure: for each aggregated tuple, only one aggregatee val Cuboids”, Proc. of The 2017 IEEE Int. Conf. on Advanced Infation
. 9greg P y 99 g. Networking and Applications Science AINA 2017, |IEEE, pp6583.

of the measure is stored. Wh.ereas the representathns bMS]"‘ Y. Sismanis, A. Deligiannakis, N. Roussopoulos, and atitis, “Dwarf:
half of data cube compute the index bases for computing data shrinking the petacube”, Proc. of ACM SIGMOD'02, pp. 464547

with an r function: for h r 6] W. Wang, H. Lu, J. Feng, and J. X. Yu, “Condensed cube: ficient
cube ..t afy ag.g egated u Ct?]. 0 TaC aghg eﬁate@’tuﬂ approach to reducing data cube size”, Proc. of Int. Conf. ataD
a partition of rowids is stored. This explains why the sterag Engineering 2002, pp. 155-165.

space of the representation by a half of data cube is mugh] A. Casali, R. Cicchetti, and L. Lakhal, “Extracting semtias from

i - data cubes using cube transversals and closures”, Pront.dCénf. on
more bigger than that of TRS-BUC. Knowledge Discovery and Data Mining (KDD’03), pp. 69-78.
VI. CONCLUSION AND FURTHER WORK [18] A. Casali, S. Nedjar, R. Cicchetti, L. Lakhal, and N. Nty “Loss-
less Reduction of Datacubes using Partitions”, In Int. daliof Data
On the above discussions, we can see that Warehousing and Mining (IJDWM), 2009, Vol 5, Issue 1, pp. B8-3

_ irat i ; i] L. Lakshmanan, J. Pei, and Y. Zhao, “QC-Trees: An EffitiBammary
. .The first-half index base representation I.S re.a”y mofé’ Structure for Semantic OLAP”, Proc. of ACM SIGMOD'03, pp. 8-
efficient than the last-half data cube representation,rimsef [50] p. xin, J. Han, X. Li, and B. W. Wah, “Star-cubing: compmgiiceberg

storage space, construction time, and average query r&spon cubes by top-down and bottom-up integration”, Proc. of VLD®' pp.
476-487.

time, and ! .
! . f?l] Y. Feng, D. Agrawal, A. E. Abbadi, and A. Metwally, “Raagcube:
— We can not really compare experimental results of the efficient cube computation by exploiting data correlatioRtoc. of Int.

last-half data cube representation or the first-half indageb Conf. on Data Engineering 2004, pp. 658-670.

with those of TRS-BUC, because they are not defined afdl Z- Shao, J. Han, and D. Xin, "Mm-cubing: computing icebexes
by factorizing the lattice space”, Proc. of Int. Conf. on etific and

computed in the same conditions. Statistical Database Management (SSDBM 2004), pp. 213-222.
However, on the results in Table V, we can see that the fir§t3] K. Morfonios and Y. loannidis, “Supporting the Data Guhifecycle:

half index base can be a competitive approach to TRS-BUC, The Power of ROLAP”, The VLDB Journal, 2008, 17(4), pp. 7Z#7

