Abstract
Given a relational fact table R, we call a base of data cubes on R a structure that allows to query the data cubes with any aggregate function. This work presents a compact base of data cubes, called the first-half index base, with its implementation, and the method for querying the data cubes using this base. Through experiments on real datasets, we show how the first-half index base resolves efficiently the main data cube issues, i.e., the storage space and the query response time.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Agarwal, S., et al.: On the computation of multidimensional aggregates. In: Proceedings of VLDB 1996, pp. 506–521 (1996)
Harinarayan, V., Rajaraman, A., Ullman, J.: Implementing data cubes efficiently. In: Proceedings of SIGMOD 1996, pp. 205–216 (1996)
Blackard, J.A.: The forest covertype dataset. ftp://ftp.ics.uci.edu/pub/machine-learning-databases/covtype
Hahn, C., Warren, S., London, J.: Edited synoptic cloud reports from ships and land stations over the globe. http://cdiac.esd.ornl.gov/cdiac/ndps/ndp026b.html
Census Modified Race Data Summary File for Counties Alabama through Missouri. http://www.census.gov/popest/research/modified/STCO-MR2010_AL_MO.csv
Online Retail Data Set, UCI Machine Learning Repository. https://archive.ics.uci.edu/ml/datasets/Online+Retail
Ross, K.A., Srivastava, D.: Fast computation of sparse data cubes. InL Proceedings of VLDB 1997, pp. 116–125 (1997)
Beyer, K.S., Ramakrishnan, R.: Bottom-up computation of sparse and iceberg cubes. In: Proceedings of ACM Special Interest Group on Management of Data (SIGMOD 1999), pp. 359–370 (1999)
Vitter, J.S., Wang, M., Iyer, B.R.: Data cube approximation and histograms via wavelets. In: Proceedings of International Conference on Information and Knowledge Management (CIKM 1998), pp. 96–104 (1998)
Han, J., Pei, J., Dong, G., Wang, K.: Efficient computation of iceberg cubes with complex measures. In: Proceedings of ACM SIGMOD 2001, pp. 441–448 (2001)
Lakshmanan, L., Pei, J., Han, J.: Quotient cube: how to summarize the semantics of a data cube. In: Proceedings of VLDB 2002, pp. 778–789 (2002)
Phan-Luong, V.: A simple and efficient method for computing data cubes. In: Proceedings of The 4th International Conference on Communications, Computation, Networks and Technologies INNOV 2015, pp. 50–55 (2015)
Phan-Luong, V.: A simple data cube representation for efficient computing and updating. Int. J. Adv. Intell. Syst. 9(3–4), 255–264 (2016). http://www.iariajournals.org/intelligent_systems
Phan-Luong, V.: Searching data cube for submerging and emerging cuboids. In: Proceedings of The 2017 IEEE International Conference on Advanced Information Networking and Applications Science AINA 2017, pp. 586–593. IEEE (2017)
Sismanis, Y., Deligiannakis, A., Roussopoulos, N., Kotidis, Y.: Dwarf: shrinking the PetaCube. In: Proceedings of ACM SIGMOD 2002, pp. 464–475 (2002)
Wang, W., Lu, H., Feng, J., Yu, J.X.: Condensed cube: an efficient approach to reducing data cube size. In: Proceedings of International Conference on Data Engineering, pp. 155–165 (2002)
Casali, A., Cicchetti, R., Lakhal, L.: Extracting semantics from data cubes using cube transversals and closures. In: Proceedings of International Conference on Knowledge Discovery and Data Mining (KDD 2003), pp. 69–78 (2003)
Casali, A., Nedjar, S., Cicchetti, R., Lakhal, L., Novelli, N.: Lossless reduction of datacubes using partitions. Int. J. Data Warehous. Min. (IJDWM) 5(1), 18–35 (2009)
Lakshmanan, L., Pei, J., Zhao, Y.: QC-Trees: an efficient summary structure for semantic OLAP. In: Proceedings of ACM SIGMOD 2003, pp. 64–75 (2003)
Xin, D., Han, J., Li, X., Wah, B.W.: Star-cubing: computing iceberg cubes by top-down and bottom-up integration. In: Proceedings of VLDB 2003, pp. 476–487 (2003)
Feng, Y., Agrawal, D., Abbadi, A.E., Metwally, A.: Range cube: efficient cube computation by exploiting data correlation. In: Proceedings of International Conference on Data Engineering, pp. 658–670 (2004)
Shao, Z., Han, J., Xin, D.: Mm-cubing: computing iceberg cubes by factorizing the lattice space. In: Proceedings of International Conference on Scientific and Statistical Database Management (SSDBM 2004), pp. 213–222 (2004)
Morfonios, K., Ioannidis, Y.: Supporting the data cube lifecycle: the power of ROLAP. VLDB J. 17(4), 729–764 (2008)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Phan-Luong, V. (2019). First-Half Index Base for Querying Data Cube. In: Arai, K., Kapoor, S., Bhatia, R. (eds) Intelligent Systems and Applications. IntelliSys 2018. Advances in Intelligent Systems and Computing, vol 868. Springer, Cham. https://doi.org/10.1007/978-3-030-01054-6_78
Download citation
DOI: https://doi.org/10.1007/978-3-030-01054-6_78
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-01053-9
Online ISBN: 978-3-030-01054-6
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)