Skip to main content

An Efficient Compressive Sensing Method for Connected Health Applications

  • Conference paper
  • First Online:
Intelligent Systems and Applications (IntelliSys 2018)

Abstract

The sensitive domain of healthcare intensifies the shortcomings associated with internet of things (IoT) based remote health monitoring systems in terms of their high-energy consumption and big data issues such as latency and privacy, caused by, the continuous stream of raw data. Hence, in the development of their remote elderly monitoring system (REMS), the authors focus on using embedded multicore architectures as powerful IoT edge devices and energy efficient signal acquisition and processing techniques to elevate such limitations. This study addresses the design of sparsifying matrices for electroencephalogram (EEG) signals in the context of compressed sensing. These signals are known to be non-sparse in both time and standard transform domains. The designed matrices are adapted to the data and are based on the autoregressive modeling of the signal and the singular value decomposition (SVD) of the impulse response matrix of the linear predictive coding (LPC) filter. To facilitate the hardware implementation and to prolong the life of the wearable node, the measurement matrix is chosen to be binary. The proposed algorithm has been applied to the EEGLab dataset ‘eeglab data set’ with an average normalized mean square error of 0.068.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Teng, X.-F., Zhang, Y.-T., Poon, C.C.Y., Bonato, P.: Wearable medical systems for p-health. IEEE Rev. Biomed. Eng. 1, 62–74 (2008)

    Article  Google Scholar 

  2. Minoli, D.: Building the internet of things with IPv6 and MIPv6: the evolving world of M2m communications. Wiley, Hoboken, New Jersey (2013)

    Book  Google Scholar 

  3. Bote, J.M., Recas, J., Rincon, F., Atienza, D., Hermida, R.: A modular low-complexity ECG delineation algorithm for real-time embedded systems. IEEE J. Biomed. Health Inform., 1–1 (2017)

    Google Scholar 

  4. Samie, F., Tsoutsouras, V., Bauer, L., Xydis, S., Soudris, D., Henkel, J.: Computation offloading and resource allocation for low-power IoT edge devices. pp. 7–12 (2016)

    Google Scholar 

  5. Ghasemzadeh, H., Amini, N., Saeedi, R., Sarrafzadeh, M.: Power-aware computing in wearable sensor networks: an optimal feature selection. IEEE Trans. Mob. Comput. 14(4), 800–812 (2015)

    Article  Google Scholar 

  6. Lee, K.H., Kung, S.-Y., Verma, N.: Low-energy formulations of support vector machine kernel functions for biomedical sensor applications. J. Signal Process. Syst. 69(3), 339–349 (2012)

    Article  Google Scholar 

  7. Mazomenos, E.B., et al.: A low-complexity ECG feature extraction algorithm for mobile healthcare applications. IEEE J. Biomed. Health Inform 17(2), 459–469 (2013)

    Article  Google Scholar 

  8. Chen, F., Chandrakasan, A.P., Stojanovic, V.M.: Design and analysis of a hardware-efficient compressed sensing architecture for data compression in wireless sensors. IEEE J. Solid-State Circuits 47(3), 744–756 (2012)

    Article  Google Scholar 

  9. Mamaghanian, H., Khaled, N., Atienza, D., Vandergheynst, P.: Compressed sensing for real-time energy-efficient ECG compression on wireless body sensor nodes. IEEE Trans. Biomed. Eng. 58(9), 2456–2466 (2011)

    Article  Google Scholar 

  10. Shoaib, M., Lee, K.H., Jha, N.K., Verma, N.: A 0.6-107 uW energy-scalable processor for directly analyzing compressively-sensed EEG. IEEE Trans. Circuits Syst. Regul. Pap. 61(4), 1105–1118 (2014)

    Article  Google Scholar 

  11. Casson, A.J., Yates, D., Smith, S., Duncan, J., Rodriguez-Villegas, E.: Wearable electroencephalography. IEEE Eng. Med. Biol. Mag. 29(3), 44–56 (May 2010)

    Article  Google Scholar 

  12. Chi, Y.M., Jung, Tzyy-Ping, Cauwenberghs, G.: Dry-contact and noncontact biopotential electrodes: methodological review. IEEE Rev. Biomed. Eng. 3, 106–119 (2010)

    Article  Google Scholar 

  13. Roebuck, et al.: A review of signals used in sleep analysis. Physiol. Meas. 35(1), R1–R57 (2014)

    Article  MathSciNet  Google Scholar 

  14. Xu, J., Yazicioglu, R.F., Grundlehner, B., Harpe, P., Makinwa, K.A.A., Van Hoof, C.: A 160 W 8-channel active electrode system for EEG monitoring. IEEE Trans. Biomed. Circuits Syst. 5(6), 555–567 (2011)

    Article  Google Scholar 

  15. Xu, J., Mitra, S., Van Hoof, C., Yazicioglu, R., Makinwa, K.A.A.: Active electrodes for wearable EEG acquisition: review and electronics design methodology. IEEE Rev. Biomed. Eng., 1–1 (2017)

    Google Scholar 

  16. Boer, H., Engel Jr. J., Prilipko, L.: Global campaign against epilespsy. In: Atlas: Epilepsy Care in the World. Geneva: Programme for Neurological Diseases and Neuroscience, Department of Mental Health and Substance Abuse, World Health Organization, pp. 82–83 (2005)

    Google Scholar 

  17. Schelter, B., Timmer, J., Schulze-Bonhage, A. (eds.): Seizure Prediction in Epilepsy. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany (2008)

    Google Scholar 

  18. Sun, F.T., Morrell, M.J.: Closed-loop neurostimulation: the clinical experience. Neurotherapeutics 11(3), 553–563 (2014)

    Article  Google Scholar 

  19. Theodore, W.H., Fisher, R.S.: Brain stimulation for epilepsy. Lancet Neurol. 3(2), 111–118 (2004)

    Article  Google Scholar 

  20. Halpern, H., Samadani, U., Litt, B., Jaggi, J.L., Baltuch, G.H.: Deep brain stimulation for epilepsy. Neurotherapeutics 5(1), 59–67 (2008)

    Article  Google Scholar 

  21. Medtronic: Advanced pain therapy using neurostimulation for chronic pain. Clinical Summary (2014)

    Google Scholar 

  22. Baali, H., Khorshidtalab, A., Mesbah, M., Salami, M.J.E.: A transform-based feature extraction approach for motor imagery tasks classification. IEEE J. Transl. Eng. Health Med. 3, 1–8 (2015)

    Article  Google Scholar 

  23. Delgado Saa, J.F., Cetin, M.: Discriminative methods for classification of asynchronous imaginary motor tasks from EEG data. IEEE Trans. Neural Syst. Rehabil. Eng. 21(5), 716–724 (2013)

    Article  Google Scholar 

  24. Lotte, F., Congedo, M., Lécuyer, A., Lamarche, F., Arnaldi, B.: A review of classification algorithms for EEG-based brain–computer interfaces. J. Neural Eng. 4(2), R1–R13 (2007)

    Article  Google Scholar 

  25. Zander, T.O., Kothe, C., Jatzev, S., Gaertner, M.: Enhancing human-computer interaction with input from active and passive brain-computer interfaces. In: Tan, D.S., Nijholt, A. (eds.) Brain-Computer Interfaces: Applying Our Minds To Human-Computer Interaction, pp. 181–199. Springer, London (2010)

    Chapter  Google Scholar 

  26. Laska, J.N., Kirolos, S., Duarte, M.F., Ragheb, T.S., Baraniuk, R.G., Massoud, Y.: Theory and implementation of an analog-to-information converter using random demodulation, pp. 1959–1962 (2007)

    Google Scholar 

  27. Mamaghanian, H., Khaled, N., Atienza, D., Vandergheynst, P.: Design and exploration of low-power analog to information conversion based on compressed sensing. IEEE J. Emerg. Sel. Top. Circuits Syst. 2(3), 493–501 (2012)

    Article  Google Scholar 

  28. Zhang, Z., Jung, T.-P., Makeig, S., Rao, B.D.: Compressed sensing of EEG for wireless telemonitoring with low energy consumption and inexpensive hardware. IEEE Trans. Biomed. Eng. 60(1), 221–224 (2013)

    Article  Google Scholar 

  29. Zhang, Z., Rao, B.D.: Extension of SBL algorithms for the recovery of block sparse signals with intra-block correlation. IEEE Trans. Signal Process. 61(8), 2009–2015 (2013)

    Article  Google Scholar 

  30. Makhoul, J.: Linear prediction: a tutorial review. Proc. IEEE 63(4), 561–580 (1975)

    Article  Google Scholar 

  31. Park, S.-W., Gomez, M., Khastri, R.: Speech compression using line spectrum pair frequencies and wavelet transform, pp. 437–440 (2001)

    Google Scholar 

Download references

Acknowledgements

This paper was made possible by National Priorities Research Program (NPRP) Grant No. 9-114-2-055 from the Qatar National Research Fund (a member of Qatar Foundation). The statements made herein are solely the responsibility of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed Al Disi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Al Disi, M. et al. (2019). An Efficient Compressive Sensing Method for Connected Health Applications. In: Arai, K., Kapoor, S., Bhatia, R. (eds) Intelligent Systems and Applications. IntelliSys 2018. Advances in Intelligent Systems and Computing, vol 869. Springer, Cham. https://doi.org/10.1007/978-3-030-01057-7_29

Download citation

Publish with us

Policies and ethics