Skip to main content

Employee Turnover Prediction with Machine Learning: A Reliable Approach

  • Conference paper
  • First Online:

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 869))

Abstract

Supervised machine learning methods are described, demonstrated and assessed for the prediction of employee turnover within an organization. In this study, numerical experiments for real and simulated human resources datasets representing organizations of small-, medium- and large-sized employee populations are performed using (1) a decision tree method; (2) a random forest method; (3) a gradient boosting trees method; (4) an extreme gradient boosting method; (5) a logistic regression method; (6) support vector machines; (7) neural networks; (8) linear discriminant analysis; (9) a Naïve Bayes method; and (10) a K-nearest neighbor method. Through a robust and comprehensive evaluation process, the performance of each of these supervised machine learning methods for predicting employee turnover is analyzed and established using statistical methods. Additionally, reliable guidelines are provided on the selection, use and interpretation of these methods for the analysis of human resources datasets of varying size and complexity.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Alao, D., Adeyemo, A.B.: Analyzing employee attrition using decision tree algorithms. Comput. Inf. Syst. Dev. Inform. Allied Res. J. 4 (2013)

    Google Scholar 

  2. Al-Radaideh, Q.A., Al Nagi, E.: Using data mining techniques to build a classification model for predicting employees performance. Int. J. Adv. Comput. Sci. Appl. 3, 144–151 (2012)

    Google Scholar 

  3. Chang, H.Y.: Employee turnover: a novel prediction solution with effective feature selection. WSEAS Trans. Inf. Sci. Appl. 6, 417–426 (2009)

    Google Scholar 

  4. Chien, C.F., Chen, L.F.: Data mining to improve personnel selection and enhance human capital: a case study in high-technology industry. Expert Syst. Appl. 34, 280–290 (2008)

    Article  Google Scholar 

  5. Li, Y.M., Lai, C.Y., Kao, C.P.: Building a qualitative recruitment system via SVM with MCDM approach. Appl. Intell. 35, 75–88 (2011)

    Article  Google Scholar 

  6. Nagadevara, V., Srinivasan, V., Valk, R.: Establishing a link between employee turnover and withdrawal behaviours: application of data mining techniques. Res. Pract. Hum. Resour. Manag. 16, 81–97 (2008)

    Google Scholar 

  7. Quinn, A., Rycraft, J.R., Schoech, D.: Building a model to predict caseworker and supervisor turnover using a neural network and logistic regression. J. Technol. Hum. Serv. 19, 65–85 (2002)

    Article  Google Scholar 

  8. Sexton, R.S., McMurtrey, S., Michalopoulos, J.O., Smith, A.M.: Employee turnover: a neural network solution. Comput. Oper. Res. 32, 2635–2651 (2005)

    Article  Google Scholar 

  9. Suceendran, K., Saravanan, R., Divya Ananthram, D.S., Kumar, R.K., Sarukesi, K.: Applying classifier algorithms to organizational memory to build an attrition predictor model

    Google Scholar 

  10. Tzeng, H.M., Hsieh, J.G., Lin, Y.L.: Predicting nurses’ intention to quit with a support vector machine: a new approach to set up an early warning mechanism in human resource management. CIN: Comput. Inf. Nurs. 22, 232–242 (2004)

    Google Scholar 

  11. Valle, M.A., Varas, S., Ruz, G.A.: Job performance prediction in a call center using a naive Bayes classifier. Expert Syst. Appl. 39, 9939–9945 (2012)

    Article  Google Scholar 

  12. Haq, N.F., Onik, A.R., Shah, F.M.: An ensemble framework of anomaly detection using hybridized feature selection approach (HFSA). In: SAI Intelligent Systems Conference (IntelliSys), pp. 989–995, IEEE (2015)

    Google Scholar 

  13. Punnoose, R., Ajit, P.: Prediction of employee turnover in organizations using machine learning algorithms. Int. J. Adv. Res. Artif. Intell. 5, 22–26 (2016)

    Article  Google Scholar 

  14. Sikaroudi, E., Mohammad, A., Ghousi, R., Sikaroudi, A.: A data mining approach to employee turnover prediction (case study: Arak automotive parts manufacturing). J. Ind. Syst. Eng. 8, 106–121 (2015)

    Google Scholar 

  15. McKinley Stacker, I.V.: IBM waston analytics. Sample data: HR employee attrition and performance [Data file]. Retrieved from https://www.ibm.com/communities/analytics/watson-analytics-blog/hr-employee-attrition/ (2015)

  16. Shahshahani, B.M., Landgrebe, D.A.: The effect of unlabeled samples in reducing the small sample size problem and mitigating the Hughes phenomenon. IEEE Trans. Geosci. Remote Sens. 32, 1087–1095 (1994)

    Article  Google Scholar 

  17. Géron, A.: Hands-on machine learning with Scikit-Learn and TensorFlow: concepts, tools, and techniques to build intelligent systems. O’Reilly Media (2017)

    Google Scholar 

  18. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  19. Fisher, R.A.: The use of multiple measurements in taxonomic problems. Ann. Hum. Genet. 7, 179–188 (1936)

    Google Scholar 

  20. Murphy, K.P.: Machine learning: a probabilistic perspective. MIT press, Cambridge (2012)

    MATH  Google Scholar 

  21. Seddik, A.F., Shawky, D.M.: Logistic regression model for breast cancer automatic diagnosis. In: SAI Intelligent Systems Conference (IntelliSys), IEEE, pp. 150–154 (2015)

    Google Scholar 

  22. Bakry, U., Ayeldeen, H., Ayeldeen, G., Shaker, O.: Classification of Liver Fibrosis patients by multi-dimensional analysis and SVM classifier: an Egyptian case study. In: Proceedings of SAI Intelligent Systems Conference, pp. 1085–1095. Springer, Cham (2016)

    Google Scholar 

  23. Mathias, H.D., Ragusa, V.R.: Micro aerial vehicle path planning and flight with a multi-objective genetic algorithm. In Proceedings of SAI Intelligent Systems Conference, pp. 107–124. Springer, Cham (2016)

    Google Scholar 

  24. Ye, Q., Zhang, Z., Law, R.: Sentiment classification of online reviews to travel destinations by supervised machine learning approaches. Expert Syst. Appl. 36, 6527–6535 (2009)

    Article  Google Scholar 

  25. Durant, K.T., Smith, M.D.: Predicting the political sentiment of web log posts using supervised machine learning techniques coupled with feature selection. In: International Workshop on Knowledge Discovery on the Web, pp. 187–206. Springer, Berlin, Heidelberg (2006)

    Google Scholar 

  26. Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining, pp. 785–794, ACM (2016)

    Google Scholar 

  27. Bousquet, O., Elisseeff, A.: Stability and generalization. J. Mach. Learn. Res. 2, 499–526 (2002)

    MathSciNet  MATH  Google Scholar 

  28. Breiman, L.: Random forests. Mach. Learn. 45, 5–32 (2001)

    Article  Google Scholar 

  29. Kotsiantis, S.B.: Supervised machine learning: a review of classification techniques. Informatica 31, 249–268 (2007)

    MathSciNet  MATH  Google Scholar 

  30. Friedman, J.H.: Greedy function approximation: a gradient boosting machine. Ann. Stat. 1189–1232 (2001)

    Google Scholar 

  31. Morgan, J.N., Sonquist, J.A.: Problems in the analysis of survey data, and a proposal. J. Am. Stat. Assoc. 58, 415–434 (1963)

    Article  Google Scholar 

  32. Muller, K.R., Mika, S., Ratsch, G., Tsuda, K., Scholkopf, B.: An introduction to kernel-based learning algorithms. IEEE. T. Neural. Networ. 12, 181–201 (2001)

    Article  Google Scholar 

  33. Zhang, H.: The optimality of naive Bayes. AA, 1, 3

    Google Scholar 

  34. Friedman, J., Hastie, T., Tibshirani, R.: The elements of statistical learning. Springer, New York (2001)

    MATH  Google Scholar 

  35. Jantan, H., Hamdan, A.R., Othman, Z.A.: Human talent prediction in HRM using C4. 5 classification algorithm. Int. J. Comput. Sci. Eng. 2, 2526–2534 (2010)

    Google Scholar 

  36. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20, 273–297 (1995)

    MATH  Google Scholar 

  37. Cox, D.R.: The regression analysis of binary sequences. J. Roy. Stat. Soc. B. Met., 215–242 (1958)

    Google Scholar 

  38. Hong, W.C., Pai, P.F., Huang, Y.Y., Yang, S.L.: Application of support vector machines in predicting employee turnover based on job performance. Adv. Nat. Comput., 419 (2005)

    Google Scholar 

  39. DMLC: Introduction to boosted trees. Retrieved from http://xgboost.readthedocs.io/en/latest/model.html (2015)

  40. Somers, M.J.: Application of two neural network paradigms to the study of voluntary employee turnover. J. Appl. Psychol. 84, 177 (1999)

    Article  Google Scholar 

  41. McKnight, P.E., Najab, J.: Mann Whitney U Test. In: Corsini Encyclopedia of Psychology (2010)

    Google Scholar 

  42. Dos Santos, E.M., Oliveira, L.S., Sabourin, R., Maupin, P.: Overfitting in the selection of classifier ensembles: a comparative study between pso and ga. In: Proceedings of the 10th Annual Conference on Genetic and Evolutionary Computation, ACM, pp. 1423–1424 (2008)

    Google Scholar 

  43. Raschka, S.: Python Machine Learning. Packt Publishing Ltd, Birmingham (2015)

    Google Scholar 

  44. Efron, B.S., Hastie, T.: Computer Age Statistical Inference. Cambridge University Press, Cambridge (2016)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yue Zhao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhao, Y., Hryniewicki, M.K., Cheng, F., Fu, B., Zhu, X. (2019). Employee Turnover Prediction with Machine Learning: A Reliable Approach. In: Arai, K., Kapoor, S., Bhatia, R. (eds) Intelligent Systems and Applications. IntelliSys 2018. Advances in Intelligent Systems and Computing, vol 869. Springer, Cham. https://doi.org/10.1007/978-3-030-01057-7_56

Download citation

Publish with us

Policies and ethics