Skip to main content

Combining Case-Based Reasoning with Complex Event Processing for Network Traffic Classification

  • Conference paper
  • First Online:
Case-Based Reasoning Research and Development (ICCBR 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11156))

Included in the following conference series:

  • 1104 Accesses

Abstract

In this paper we present an approach for combining Case-based Reasoning (CBR) and Complex Event Processing (CEP) in order to classify network traffic. We show that this combination has a high potential to improve existing classification methods by enriching the stream processing techniques in CEP with the capability of historic case reuse in CBR by continuously analysing the application layer data of network communication.

This work was supported by the German Federal Ministry of Education and Research within the funding program Forschung an Fachhochschulen (contract number 13FH019IA6).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Anicic, D., et al.: Stream reasoning and complex event processing in ETALIS. In: Semantic Web 3.4, pp. 397–407, 1st January 2012. ISSN 15700844. https://doi.org/10.3233/SW-2011-0053. https://content.iospress.com/articles/semantic-web/sw053. Accessed 05 Apr 2018

  2. Bernaille, L., Teixeira, R., Salamatian, K.: Early application identification. In: Proceedings of the 2006 ACM CoNEXT Conference, CoNEXT 2006, New York, NY, USA, pp. 6:1–6:12. ACM (2006). ISBN 978-1-59593-456-7. https://doi.org/10.1145/1368436.1368445. Accessed 05 Apr 2018

  3. Chung, J.Y., Park, B., Won, Y.J., Strassner, J., Hong, J.W.: Traffic classification based on flow similarity. In: Nunzi, G., Scoglio, C., Li, X. (eds.) IPOM 2009. LNCS, vol. 5843, pp. 65–77. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04968-2_6

    Chapter  Google Scholar 

  4. EsperTech, Inc., Esper Reference Documentation. http://esper.espertech.com/release-7.1.0/esper-reference/html/index.html. Accessed 24 Apr 2018

  5. Gad, R., et al.: Hierarchical events for efficient distributed network analysis and surveillance. In: Proceedings of the 2nd International Workshop on Adaptive Services for the Future Internet and 6th International Workshop on Web APIs and Service Mashups, pp. 5–11. ACM (2012). ISBN 1-4503-1566-6

    Google Scholar 

  6. Gad, R., et al.: Leveraging EDA and CEP for integrating low-level network analysis methods into modern, distributed IT architectures. In: VII Jornadas de Ciencia e Ingeniería de Servicios (JCIS-SISTEDES 2012), Almería (2012)

    Google Scholar 

  7. Gad, R., et al.: Employing the CEP paradigm for network analysis and surveillance. In: Proceedings of the Ninth Advanced International Conference on Telecommunications, pp. 204–210. Citeseer (2013)

    Google Scholar 

  8. Gay, P., López, B., Meléndez, J.: Sequential learning for case-based pattern recognition in complex event domains. In: Proceedings of the 16th UK Workshop on Case-Based Reasoning, pp. 46–55 (2011)

    Google Scholar 

  9. IANA: Service Name and Transport Protocol Port Number Registry, 27th March 2018. https://www.iana.org/assignments/portnumbers. Accessed 04 May 2018

  10. ITU Telecommunication Standardization Sector. Information Technology - Open Systems Interconnection - Basic Reference Model: The Basic Model (1994). http://handle.itu.int/11.1002/1000/2820. Accessed 27 Apr 2018

  11. Lin, P.C., et al.: Using string matching for deep packet inspection. Computer 41(4), 23–28 (2008). https://doi.org/10.1109/MC.2008.138. ISSN 0018–9162

    Article  Google Scholar 

  12. Luckham, D.: The power of events: an introduction to complex event processing in distributed enterprise systems. In: Bassiliades, N., Governatori, G., Paschke, A. (eds.) RuleML 2008. LNCS, vol. 5321, pp. 3–3. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88808-6_2

    Chapter  Google Scholar 

  13. Nguyen, T.T.T., Armitage, G.: A survey of techniques for internet traffic classification using machine learning. IEEE Commun. Surv. Tutor. 10(4), 56–76 (2008). https://doi.org/10.1109/SURV.2008.080406. ISSN 1553–877X

    Article  Google Scholar 

  14. Richter, M.M.: Case-Based Reasoning: A Textbook, 1st edn. Springer, New York (2013). https://doi.org/10.1007/978-3-642-40167-1. ISBN 978-3-642-40166-4

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Grob .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Grob, M., Kappes, M., Medina-Bulo, I. (2018). Combining Case-Based Reasoning with Complex Event Processing for Network Traffic Classification. In: Cox, M., Funk, P., Begum, S. (eds) Case-Based Reasoning Research and Development. ICCBR 2018. Lecture Notes in Computer Science(), vol 11156. Springer, Cham. https://doi.org/10.1007/978-3-030-01081-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-01081-2_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-01080-5

  • Online ISBN: 978-3-030-01081-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics