Abstract
Multiplex networks are defined by the presence of multiple edge types. As a consequence, it is hard to produce a single visualization of a network revealing both the structure of each edge type and their mutual relationships: multiple visualization strategies are possible, depending on how each edge type should influence the position of the nodes in the sociogram. In this paper we introduce multiforce, a force-directed layout for multiplex networks where both intra-layer and inter-layer relationships among nodes are used to compute node coordinates. Despite its simplicity, our algorithm can reproduce the main existing approaches to draw multiplex sociograms, and also supports a new intermediate type of layout. Our experiments on real data show that multiforce enables layered visualizations where each layer represents an edge type, nodes are well aligned across layers and the internal layout of each layer highlights the structure of the corresponding edge type.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
In theory inter-layer forces can also be used to visualize more general networks, where edges can cross layers, but in this work we focus on multiplex networks.
- 2.
References
Bannister, M.J., Eppstein, D., Goodrich, M.T., Trott, L.: Force-directed graph drawing using social gravity and scaling. In: Didimo, W., Patrignani, M. (eds.) GD 2012. LNCS, vol. 7704, pp. 414–425. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36763-2_37
Buchheim, C., Chimani, M., Gutwenger, C., Jnger, M., Mutzel, P.: Crossings and Planarization. CRC Press, Hoboken (2013)
Cardillo, A., Gómez-Gardeñes, J., Zanin, M., Romance, M., Papo, D., del Pozo, F., Boccaletti, S.: Emergence of network features from multiplexity. Sci. Rep. 3, 1344 (2013)
De Domenico, M., Porter, M.A., Arenas, A.: MuxViz: a tool for multilayer analysis and visualization of networks. J. Complex Netw. 3, 159–176 (2014)
De Domenico, M., Solé-Ribalta, A., Gòmez, S., Arenas, A.: Navigability of interconnected networks under random failures. PNAS 111, 8351–8356 (2014)
DÃaz, J., Petit, J., Serna, M.: A survey of graph layout problems. ACM Comput. Surv. 34(3), 313–356 (2002)
Dwyer, T., Gallagher, D.R.: Visualising changes in fund manager holdings in two and a half-dimensions. Inf. Vis. 4(3), 227–244 (2004)
Brandes, U., Mader, M.: A quantitative comparison of stress-minimization approaches for offline dynamic graph drawing. In: van Kreveld, M., Speckmann, B. (eds.) GD 2011. LNCS, vol. 7034, pp. 99–110. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-25878-7_11
Dwyer, T., Marriott, K., Schreiber, F., Stuckey, P., Woodward, M., Wybrow, M.: Exploration of networks using overview+detail with constraint-based cooperative layout. IEEE Trans. Vis. Comput. Graph. 14(6), 1293–300 (2008)
Fruchterman, T.M.J., Reingold, E.M.: Graph drawing by force-directed placement. Softw. Pract. Exp. 21(11), 1129–1164 (1991)
Gansner, E.R., Koren, Y., North, S.: Graph drawing by stress majorization. In: Pach, J. (ed.) GD 2004. LNCS, vol. 3383, pp. 239–250. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31843-9_25
Huang, X., Lai, W., Sajeev, A.S.M., Gao, J.: A new algorithm for removing node overlapping in graph visualization. Inf. Sci. 177(14), 2821–2844 (2007)
Coleman, H.M.J., Katz, E.: The diffusion of an innovation among physicians. Sociometry 20(4), 253–270 (1957)
Moody, J., McFarland, D., Bender deMoll, S.: Dynamic network visualization. Am. J. Sociol. 110(4), 1206–1241 (2005)
Kamada, T., Kawai, S.: An algorithm for drawing general undirected graphs. Inf. Process. Lett. 31(1), 7–15 (1989)
Kivelä, M., Arenas, A., Barthelemy, M., Gleeson, J.P., Moreno, Y., Porter, M.A.: Multilayer networks. J. Complex Netw. 2(3), 203–271 (2014)
Koren, Y., Carmel, L., Harel, D.: ACE: a fast multiscale eigenvectors computation for drawing huge graphs. In: IEEE Symposium on Information Visualization, INFOVIS 2002, pp. 137–144 (2002)
Kumar, P., Zhang, K.: Visualization of clustered directed acyclic graphs with node interleaving. In: Proceedings of the 2009 ACM Symposium on Applied Computing, SAC 2009, New York, NY, USA, pp. 1800–1805. ACM (2009)
Kurant, M., Thiran, P.: Layered complex networks. Phys. Rev. Lett. 96(13), 138701 (2006)
Ma, D.: Visualization of social media data: mapping changing social networks. Master’s thesis, the Faculty of Geo-Information Science and Earth Observation of the University of Twent (2012)
Magnani, M., Rossi, L.: The ML-model for multi-layer social networks. In: Proceedings of the International Conference on Social Network Analysis and Mining (ASONAM), pp. 5–12. IEEE Computer Society (2011)
Moreno, J.: Who Shall Survive?: A New Approach to the Problem of Human Interrelations. Nervous and Mental Disease Publishing Co., Washington, D.C. (1934)
Padgett, J.F., McLean, P.D.: Organizational invention and elite transformation: the birth of partnership systems in renaissance florence. Am. J. Sociol. 111(5), 1463–1568 (2006)
Redondo, D., Sallaberry, A., Ienco, D., Zaidi, F., Poncelet, P.: Layer-centered approach for multigraphs visualization. In: Proceedings of the International Conference on Information Visualisation (iV), pp. 50–55 (2015)
Renoust, B., Melanon, G., Munzner, T.: Detangler: visual analytics for multiplex networks. Comput. Graph. Forum 34(3), 321–330 (2015)
Rossi, L., Magnani, M.: Towards effective visual analytics on multiplex and multilayer networks. Chaos Solitons Fractals 72, 68–76 (2015)
Schaefer, M.: The graph crossing number and its variants: a survey. Electron. J. Comb. 1000, DS21 (2013)
Shabbeer, A., Ozcaglar, C., Gonzalez, M., Bennett, KP.: Optimal embedding of heterogeneous graph data with edge crossing constraints. In: Presented at NIPS Workshop on Challenges of Data Visualization, p. 1 (2010)
von Landesberger, T., et al.: Visual analysis of large graphs: state-of-the-art and future research challenges. Comput. Graph. Forum 30(6), 1719–1749 (2011)
Erten, C., Kobourov, S.G., Le, V., Navabi, A.: Simultaneous graph drawing: layout algorithms and visualization schemes. In: Liotta, G. (ed.) GD 2003. LNCS, vol. 2912, pp. 437–449. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24595-7_41
Gajer, P., Goodrich, M.T., Kobourov, S.G.: A multi-dimensional approach to force-directed layouts of large graphs. Comput. Geom. 29(1), 3–18 (2004)
Peng, W., SiKun, L.: Social network analysis layout algorithm under ontology model. SOFTWARE 6(7), 3–18 (2011)
Ortmann, M., Klimenta, M., Brandes, U.: A sparse stress model. J. Graph Algorithms Appl. 21(5), 791–821 (2017)
Ma, N., Lu, Y., Gan, H., Li, Z.: 2013 10th Web Information System and Application Conference - Trust Network Visualization Based on Force-Directed Layout, (wisa), yangzhou, china, 10 November 2013–15 November 2013 (2013)
Baur, M., Brandes, U., Gaertler, M., Wagner, D.: Drawing the AS graph in 2.5 dimensions. In: Pach, J. (ed.) GD 2004. LNCS, vol. 3383, pp. 43–48. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31843-9_6
Acknowledgements
We thank Prof. Ken Wakita for his comments on an early version of this manuscript, and Prof. Mats Lind for insightful discussions. The work by Matteo Magnani has been funded by the European Union’s Horizon 2020 research and innovation programme under grant agreement No 732027.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
Fatemi, Z., Salehi, M., Magnani, M. (2018). A Generalized Force-Directed Layout for Multiplex Sociograms. In: Staab, S., Koltsova, O., Ignatov, D. (eds) Social Informatics. SocInfo 2018. Lecture Notes in Computer Science(), vol 11185. Springer, Cham. https://doi.org/10.1007/978-3-030-01129-1_13
Download citation
DOI: https://doi.org/10.1007/978-3-030-01129-1_13
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-01128-4
Online ISBN: 978-3-030-01129-1
eBook Packages: Computer ScienceComputer Science (R0)