Skip to main content

Network-Oriented Modeling of Multi-criteria Homophily and Opinion Dynamics in Social Media

  • Conference paper
  • First Online:
Social Informatics (SocInfo 2018)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11185))

Included in the following conference series:

Abstract

In this paper we model the opinion dynamics in social groups in combination with adaptation of the connections based on a multicriteria homophily principle. The adaptive network model has been designed according to a Network-Oriented Modeling approach based on temporal-causal networks. The model has been applied to a dataset obtained from a popular social media platform – Instagram, using the official Instagram API. The network model has also been analysed mathematically, which provided evidence that the implemented model does what is expected.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Treur, J.: Network-Oriented Modeling: Addressing Complexity of Cognitive, Affective and Social Interactions. Springer Publishers, Cham (2016). https://doi.org/10.1007/978-3-319-45213-5

    Book  MATH  Google Scholar 

  2. van der Lubbe, L.M., Treur, J., van Vught, W.: Modeling internalizing and externalizing behaviour in autism spectrum disorders. In: Nguyen, N.-T., Manolopoulos, Y., Iliadis, L., Trawiński, B. (eds.) ICCCI 2016. LNCS, vol. 9875, pp. 13–26. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45243-2_2

    Chapter  Google Scholar 

  3. Jonker, C.M., Treur, J.: A temporal-interactivist perspective on the dynamics of mental states. Cogn. Syst. Res. 4(2), 137–155 (2003). https://doi.org/10.1016/S1389-0417(02)00103-1

    Article  Google Scholar 

  4. Treur, J.: An integrative dynamical systems perspective on emotions. Biol. Inspired Cogn. Arch. 4, 27–40 (2013). https://doi.org/10.1016/j.bica.2012.07.005

    Article  Google Scholar 

  5. Treur, J.: Dynamic modeling based on a temporal-causal network modeling approach. Biol. Inspired Cogn. Arch. 16, 131–168 (2016). https://doi.org/10.1016/j.bica.2016.02.002

    Article  Google Scholar 

  6. Commu, C., Theelen, M., Treur, J.: An adaptive temporal-causal network model for enabling learning of social interaction. In: Bajo, J., et al. (eds.) PAAMS 2017. CCIS, vol. 722, pp. 257–270. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60285-1_22

    Chapter  Google Scholar 

  7. Goedschalk, L., Treur, J., Verwolf, R.: A network-oriented modeling approach to voting behavior during the 2016 US presidential election. In: De la Prieta, F., et al. (eds.) PAAMS 2017. Advances in Intelligent Systems and Computing, vol. 619, pp. 3–15. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61578-3_1

    Chapter  Google Scholar 

  8. Roller, R., Blommestijn, S.Q., Treur, J.: An adaptive computational network model for multi-emotional social interaction. In: Cherifi, C., Cherifi, H., Karsai, M., Musolesi, M. (eds.) COMPLEX NETWORKS 2017. Studies in Computational Intelligence, vol. 689, pp. 784–796. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-72150-7_63

    Chapter  Google Scholar 

  9. Blankendaal, R., Parinussa, S., Treur, J.: A temporal-causal modelling approach to integrated contagion and network change in social networks. In: Proceedings of the 22th European Conference on AI, ECAI 2016. Frontiers in Artificial Intelligence and Applications, vol. 285, pp. 1388–1396. IOS Press (2016). https://doi.org/10.3233/978-1-61499-672-9-1388

  10. McPherson, M., Smith-Lovin, L., Cook, J.M.: Birds of a feather: homophily in social networks. Ann. Rev. Sociol. 27, 415–444 (2001)

    Article  Google Scholar 

  11. Aral, S., Muchnik, L., Sundararajan, A.: Distinguishing influence-based contagion from homophily-driven diffusion in dynamic networks. Proc. Natl. Acad. Sci. 106(51), 21544 (2009)

    Article  Google Scholar 

  12. Shalizi, C.R., Thomas, A.C.: Homophily and contagion are generically confounded in observational social network studies. Sociol. Methods Res. 27, 211–239 (2011)

    Article  MathSciNet  Google Scholar 

  13. Rogers, E.M.: Diffusion of Innovations, 4th edn. Free Press, New York (1995)

    Google Scholar 

  14. Bessi, A., et al.: Homophily and polarization in the age of misinformation. Eur. Phys. J. Spec. Top. 225(10), 2047–2059 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Treur .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kozyreva, O., Pechina, A., Treur, J. (2018). Network-Oriented Modeling of Multi-criteria Homophily and Opinion Dynamics in Social Media. In: Staab, S., Koltsova, O., Ignatov, D. (eds) Social Informatics. SocInfo 2018. Lecture Notes in Computer Science(), vol 11185. Springer, Cham. https://doi.org/10.1007/978-3-030-01129-1_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-01129-1_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-01128-4

  • Online ISBN: 978-3-030-01129-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics