Skip to main content

Exploring Local Deep Representations for Facial Gender Classification in Videos

  • Conference paper
  • First Online:
Progress in Artificial Intelligence and Pattern Recognition (IWAIPR 2018)

Abstract

Gender recognition in videos is a challenging task that has received limited attention in recent years. To tackle this problem, we propose to explore the use of intermediate features of a Convolutional Neural Network (CNN) with a component-based face representation methodology. With this approach we intend to exploit the gender information provided by different face parts. The features extracted from video key frames are combined with two different strategies to preserve the temporal information, and Random Forest classifiers are employed to obtain a final gender prediction for a video sequence. Our results on the McGill and COX datasets show that our proposal outperforms the end-to-end CNN approach and, in the McGill dataset, 100% of accuracy was obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://data.vision.ee.ethz.ch/cvl/rrothe/imdb-wiki/.

References

  1. Afifi, M., Abdelhamed, A.: Afif4: deep gender classification based on adaboost-based fusion of isolated facial features and foggy faces. arXiv preprint arXiv:1706.04277 (2017)

  2. Becerra-Riera, F., Méndez-Vázquez, H., Morales-González, A., Tistarelli, M.: Age and gender classification using local appearance descriptors from facial components. In: International Joint Conference on Biometrics (IJCB), pp. 799–804. IEEE (2017)

    Google Scholar 

  3. Castrillón-Santana, M., Lorenzo-Navarro, J., Ramón-Balmaseda, E.: Descriptors and regions of interest fusion for in- and cross-database gender classification in the wild. Image Vis. Comput. 57(C), 15–24 (2017)

    Article  Google Scholar 

  4. Castrillón-Santana, M., Marsico, M.D., Nappi, M., Riccio, D.: MEG: texture operators for multi-expert gender classification. Comput. Vis. Image Underst. 156, 4–18 (2017)

    Article  Google Scholar 

  5. Chang, L., Rodés, I., Méndez, H., del Toro, E.: Best-shot selection for video face recognition using FPGA. In: Ruiz-Shulcloper, J., Kropatsch, W.G. (eds.) CIARP 2008. LNCS, vol. 5197, pp. 543–550. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85920-8_66

    Chapter  Google Scholar 

  6. Demirkus, M., Precup, D., Clark, J.J., Arbel, T.: Hierarchical spatio-temporal probabilistic graphical model with multiple feature fusion for binary facial attribute classification in real-world face videos. IEEE Trans. Pattern Anal. Mach. Intell. 38(6), 1185–1203 (2016)

    Article  Google Scholar 

  7. Demirkus, M., Toews, M., Clark, J.J., Arbel, T.: Gender classification from unconstrained video sequences. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition - Workshops, pp. 55–62, June 2010

    Google Scholar 

  8. Demirkus, M., Precup, D., Clark, J.J., Arbel, T.: Hierarchical temporal graphical model for head pose estimation and subsequent attribute classification in real-world videos. Comput. Vis. Image Underst. 136, 128–145 (2015)

    Article  Google Scholar 

  9. Huang, Z., et al.: A benchmark and comparative study of video-based face recognition on COX face database. IEEE Trans. Image Process. 24(12), 5967–5981 (2015)

    Article  MathSciNet  Google Scholar 

  10. Levi, G., Hassner, T.: Age and gender classification using convolutional neural networks. In: Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, pp. 34–42. IEEE (2015)

    Google Scholar 

  11. Liu, Z., Luo, P., Wang, X., Tang, X.: Deep learning face attributes in the wild. In: International Conference on Computer Vision (ICCV), pp. 3730–3738. IEEE (2015)

    Google Scholar 

  12. Mansanet, J., Albiol, A., Paredes, R.: Local deep neural networks for gender recognition. Pattern Recognit. Lett. (PRLetters) 70(C), 80–86 (2016)

    Article  Google Scholar 

  13. Ng, C.B., Tay, Y.H., Goi, B.-M.: Recognizing human gender in computer vision: a survey. In: Anthony, P., Ishizuka, M., Lukose, D. (eds.) PRICAI 2012. LNCS (LNAI), vol. 7458, pp. 335–346. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32695-0_31

    Chapter  Google Scholar 

  14. Parkhi, O.M., Vedaldi, A., Zisserman, A.: Deep face recognition. In: BMVC, vol. 1, p. 6 (2015)

    Google Scholar 

  15. Rodríguez, P., Cucurull, G., Gonfaus, J.M., Roca, F.X., González, J.: Age and gender recognition in the wild with deep attention. Pattern Recognit. (PR) 72(C), 563–571 (2017)

    Article  Google Scholar 

  16. Rothe, R., Timofte, R., Gool, L.V.: Deep expectation of real and apparent age from a single image without facial landmarks. Int. J. Comput. Vis. (IJCV) 126, 144–157 (2016)

    Article  MathSciNet  Google Scholar 

  17. Selim, M., Sundararajan, S., Pagani, A., Stricker, D.: Image quality-aware deep networks ensemble for efficient gender recognition in the wild. In: Proceedings of the 13th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2018), vol. 5 (2018)

    Google Scholar 

  18. Shakhnarovich, G., Viola, P.A., Moghaddam, B.: A unified learning framework for real time face detection and classification. In: Proceedings of the Fifth IEEE International Conference on Automatic Face and Gesture Recognition, FGR 2002, p. 16. IEEE Computer Society (2002)

    Google Scholar 

  19. Wang, W.C., Hsu, R.Y., Huang, C.R., Syu, L.Y.: Video gender recognition using temporal coherent face descriptor. In: 16th IEEE/ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing, SNPD 2015, pp. 113–118. IEEE (2015)

    Google Scholar 

  20. Wang, X., Guo, R., Kambhamettu, C.: Deeply-learned feature for age estimation. In: Winter Conference on Applications of Computer Vision (WACV), pp. 534–541 (2015)

    Google Scholar 

  21. Zhong, Y., Sullivan, J., Li, H.: Face attribute prediction using off-the-shelf deep learning networks. In: International Conference on Biometrics (ICB). IEEE (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabiola Becerra-Riera .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Becerra-Riera, F., Morales-González, A., Méndez-Vázquez, H. (2018). Exploring Local Deep Representations for Facial Gender Classification in Videos. In: Hernández Heredia, Y., Milián Núñez, V., Ruiz Shulcloper, J. (eds) Progress in Artificial Intelligence and Pattern Recognition. IWAIPR 2018. Lecture Notes in Computer Science(), vol 11047. Springer, Cham. https://doi.org/10.1007/978-3-030-01132-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-01132-1_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-01131-4

  • Online ISBN: 978-3-030-01132-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics