Skip to main content

Detecting EEG Dynamic Changes Using Supervised Temporal Patterns

  • Conference paper
  • First Online:
Progress in Artificial Intelligence and Pattern Recognition (IWAIPR 2018)

Abstract

The electroencephalogram signal records the neural activation at electrodes placed over the scalp. Brain-Computer Interfaces decode brain activity measured by EEG to send commands to external devices. The most well-known BCI systems are based on Motor Imagery paradigm that corresponds to the imagination of a motor action without execution. Event-Related Desynchronization and Synchronization shows the channel-wise temporal dynamics related to the motor activity. However, ERD/S demands the application of a large bank of narrowband filters to find dynamic changes and the assumption of temporal alignment ignores the between-trial temporal variations of neuronal activity. Taking to account the temporal variations, this work introduces a signal filtering analysis based on the estimation of Supervised Temporal Patterns that decode brain dynamics in MI paradigm which result from the solution of a generalized eigenvalues problem. The signal filtering analysis detects temporal dynamics related to MI tasks within each trial. The method highlights MI activity along channels and trials and shows differences between subjects performing these kinds of tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    www.bbci.de/competition/iv/.

References

  1. Ahn, M., Cho, H., Ahn, S., Jun, S.C.: High theta and low alpha powers may be indicative of BCI-illiteracy in motor imagery. PloS One 8(11), 1–11 (2013)

    Article  Google Scholar 

  2. Alomari, M.H., Awada, E.A., Samaha, A., Alkamha, K.: Wavelet-based feature extraction for the analysis of EEG signals associated with imagined fists and feet movements. Comput. Inf. Sci. 7(2), 17 (2014)

    Google Scholar 

  3. Álvarez-Meza, A.M., Velásquez-Martínez, L.F., Castellanos-Dominguez, G.: Time-series discrimination using feature relevance analysis in motor imagery classification. Neurocomputing 151, 122–129 (2015)

    Article  Google Scholar 

  4. Bian, Y., Qi, H., Zhao, L., Ming, D., Guo, T., Fu, X.: Improvements in event-related desynchronization and classification performance of motor imagery using instructive dynamic guidance and complex tasks. Comput. Biol. Med. 96, 266–273 (2018). https://doi.org/10.1016/j.compbiomed.2018.03.018

    Article  Google Scholar 

  5. Brockmeier, A.J.: Learning and exploiting recurrent patterns in neural data. Ph.D. thesis, University of Florida (2014)

    Google Scholar 

  6. Chacko, R.V., et al.: Distinct phase-amplitude couplings distinguish cognitive processes in human attention. NeuroImage 175, 111–121 (2018). https://doi.org/10.1016/j.neuroimage.2018.03.003

    Article  Google Scholar 

  7. Cohen, M.X.: Using spatiotemporal source separation to identify prominent features in multichannel data without sinusoidal filters. Eur. J. Neurosci. (2017)

    Google Scholar 

  8. Cohen, M.X.: Analyzing Neural Time Series Data: Theory and Practice. MIT Press, Cambridge (2014)

    Google Scholar 

  9. Emami, Z., Chau, T.: Investigating the effects of visual distractors on the performance of a motor imagery brain-computer interface. Clin. Neurophysiol. 129(6), 1268–1275 (2018)

    Article  Google Scholar 

  10. Guerrero-Mosquera, C., Navia-Vázquez, A.: Automatic removal of ocular artefacts using adaptive filtering and independent component analysis for electroencephalogram data. IET Signal Process. 6(2), 99–106 (2012)

    Article  MathSciNet  Google Scholar 

  11. Kevric, J., Subasi, A.: Comparison of signal decomposition methods in classification of EEG signals for motor-imagery BCI system. Biomed. Signal Process. Control 31, 398–406 (2017). https://doi.org/10.1016/j.bspc.2016.09.007

    Article  Google Scholar 

  12. Mathalon, D.H., Sohal, V.S.: Neural oscillations and synchrony in brain dysfunction and neuropsychiatric disorders: it’s about time. JAMA Psychiatry 72(8), 840–844 (2015)

    Article  Google Scholar 

  13. Miao, M., Zeng, H., Wang, A., Zhao, C., Liu, F.: Discriminative spatial-frequency-temporal feature extraction and classification of motor imagery EEG: an sparse regression and weighted naïve Bayesian classifier-based approach. J. Neurosci. Methods 278, 13–24 (2017)

    Article  Google Scholar 

  14. Yeung, N., Bogacz, R., Holroyd, C.B., Nieuwenhuis, S., Cohen, J.D.: Theta phase resetting and the error-related negativity. Psychophysiology 44(1), 39–49 (2006). https://doi.org/10.1111/j.1469-8986.2006.00482.x

    Article  Google Scholar 

  15. Saiote, C., et al.: Resting-state functional connectivity and motor imagery brain activation. Hum. Brain Mapp. 37(11), 3847–3857 (2016)

    Article  Google Scholar 

  16. Samek, W., Nakajima, S., Kawanabe, M., Müller, K.R.: On robust parameter estimation in brain-computer interfacing. J. Neural Eng. 14(6), 061001 (2017)

    Article  Google Scholar 

  17. Sanei, S., Chambers, J.A.: EEG Signal Processing. Wiley, Hoboken (2013)

    Google Scholar 

  18. Yang, Y., Chevallier, S., Wiart, J., Bloch, I.: Subject-specific time-frequency selection for multi-class motor imagery-based BCIs using few Laplacian EEG channels. Biomed. Signal Process. Control 38, 302–311 (2017). https://doi.org/10.1016/j.bspc.2017.06.016

    Article  Google Scholar 

  19. Yuan, H., He, B.: Brain-computer interfaces using sensorimotor rhythms: current state and future perspectives. IEEE Trans. Biomed. Eng. 61(5), 1425–1435 (2014)

    Article  Google Scholar 

Download references

Acknowledgement

Thanks to under grants provided by a Ph.D. scholarship code 727 and project code 111974454838 both financed by COLCIENCIAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luisa F. Velasquez-Martinez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Velasquez-Martinez, L.F., Zapata-Castaño, F.Y., Cárdenas-Peña, D., Castellanos-Dominguez, G. (2018). Detecting EEG Dynamic Changes Using Supervised Temporal Patterns. In: Hernández Heredia, Y., Milián Núñez, V., Ruiz Shulcloper, J. (eds) Progress in Artificial Intelligence and Pattern Recognition. IWAIPR 2018. Lecture Notes in Computer Science(), vol 11047. Springer, Cham. https://doi.org/10.1007/978-3-030-01132-1_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-01132-1_40

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-01131-4

  • Online ISBN: 978-3-030-01132-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics