Skip to main content

Movement Identification in EMG Signals Using Machine Learning: A Comparative Study

  • Conference paper
  • First Online:
Progress in Artificial Intelligence and Pattern Recognition (IWAIPR 2018)

Abstract

The analysis of electromyographic (EMG) signals enables the development of important technologies for industry and medical environments, due mainly to the design of EMG-based human-computer interfaces. There exists a wide range of applications encompassing: Wireless-computer controlling, rehabilitation, wheelchair guiding, and among others. The semantic interpretation of EMG analysis is typically conducted by machine learning algorithms, and mainly involves stages for signal characterization and classification. This work presents a methodology for comparing a set of state-of-the-art approaches of EMG signal characterization and classification within a movement identification framework. We compare the performance of three classifiers (KNN, Parzen-density-based classifier and ANN) using spectral (Wavelets) and time-domain-based (statistical and morphological descriptors) features. Also, a methodology for movement selection is proposed. Results are comparable with those reported in literature, reaching classification performance of (90.89 ± 1.12)% (KNN), (93.92 ± 0.34)% (ANN) and 91.09 ± 0.93 (Parzen-density-based classifier) with 12 movements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Phinyomark, A., Phukpattaranont, P., Limsakul, C.: A review of control methods for electric power wheelchairs based on electromyography signals with special emphasis on pattern recognition. IETE Tech. Rev. 28(4), 316–326 (2011)

    Article  Google Scholar 

  2. Aguiar, L.F., Bó, A.P.: Hand gestures recognition using electromyography for bilateral upper limb rehabilitation. In: 2017 IEEE Life Sciences Conference (LSC), pp. 63–66. IEEE (2017)

    Google Scholar 

  3. Rodrguez-Sotelo, J., Peluffo-Ordoez, D., Cuesta-Frau, D., Castellanos-Domnguez, G.: Unsupervised feature relevance analysis applied to improve ECG heartbeat clustering. Comput. Methods Programs Biomed. 108(1), 250–261 (2012)

    Article  Google Scholar 

  4. Atzori, M., et al.: Electromyography data for non-invasive naturally-controlled robotic hand prostheses. Sci. Data 1, 140053 (2014)

    Article  Google Scholar 

  5. Podrug, E., Subasi, A.: Surface EMG pattern recognition by using DWT feature extraction and SVM classifier. In: The 1st Conference of Medical and Biological Engineering in Bosnia and Herzegovina (CMBEBIH 2015), March 2015, pp. 13–15 (2015)

    Google Scholar 

  6. Vicario Vazquez, S.A., Oubram, O., Ali, B.: Intelligent recognition system of myoelectric signals of human hand movement. In: Brito-Loeza, C., Espinosa-Romero, A. (eds.) ISICS 2018. CCIS, vol. 820, pp. 97–112. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-76261-6_8

    Chapter  Google Scholar 

  7. Atzori, M., et al.: Characterization of a benchmark database for myoelectric movement classification. IEEE Trans. Neural Syst. Rehabil. Eng. 23(1), 73–83 (2015)

    Article  Google Scholar 

  8. Krishna, V.A., Thomas, P.: Classification of EMG signals using spectral features extracted from dominant motor unit action potential. Int. J. Eng. Adv. Technol. 4(5), 196–200 (2015)

    Google Scholar 

  9. Negi, S., Kumar, Y., Mishra, V.: Feature extraction and classification for EMG signals using linear discriminant analysis. In: International Conference on Advances in Computing, Communication, & Automation (ICACCA) (Fall), pp. 1–6. IEEE (2016)

    Google Scholar 

  10. Phinyomark, A., Limsakul, C., Phukpattaranont, P.: A novel feature extraction for robust EMG pattern recognition. CoRR abs/0912.3973 (2009)

    Google Scholar 

  11. Ahlstrom, C., et al.: Feature extraction for systolic heart murmur classification. Ann. Biomed. Eng. 34(11), 1666–1677 (2006)

    Article  Google Scholar 

  12. Han, J.S., Song, W.K., Kim, J.S., Bang, W.C., Lee, H., Bien, Z.: New EMG pattern recognition based on soft computing techniques and its application to control of a rehabilitation robotic arm. In: Proceedings of 6th International Conference on Soft Computing (IIZUKA2000), pp. 890–897 (2000)

    Google Scholar 

  13. Kononenko, I.: Estimating attributes: analysis and extensions of RELIEF. In: Bergadano, F., De Raedt, L. (eds.) ECML 1994. LNCS, vol. 784, pp. 171–182. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-57868-4_57

    Chapter  Google Scholar 

  14. Kira, K., Rendell, L.A.: A practical approach to feature selection. In: Machine Learning Proceedings 1992, pp. 249–256. Elsevier (1992)

    Google Scholar 

  15. Halaki, M., Ginn, K.: Normalization of EMG signals: to normalize or not to normalize and what to normalize to? (2012)

    Google Scholar 

  16. Romo, H., Realpe, J., Jojoa, P., Cauca, U.: Surface EMG signals analysis and its applications in hand prosthesis control. Revista Avances en Sistemas e Informática 4(1), 127–136 (2007)

    Google Scholar 

  17. Arozi, M., et al.: Electromyography (EMG) signal recognition using combined discrete wavelet transform based on artificial neural network (ANN). In: International Conference of Industrial, Mechanical, Electrical, and Chemical Engineering (ICIMECE), pp. 95–99. IEEE (2016)

    Google Scholar 

  18. Shin, S., Tafreshi, R., Langari, R.: A performance comparison of hand motion EMG classification. In: 2014 Middle East Conference on Biomedical Engineering (MECBME), pp. 353–356. IEEE (2014)

    Google Scholar 

  19. Kim, K.S., Choi, H.H., Moon, C.S., Mun, C.W.: Comparison of k-nearest neighbor, quadratic discriminant and linear discriminant analysis in classification of electromyogram signals based on the wrist-motion directions. Curr. Appl. Phys. 11(3), 740–745 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the “Smart Data Analysis Systems - SDAS” group (http://sdas-group.com), as well as the “Grupo de Investigación en Ingeniería Eléctrica y Electrónica - GIIEE” from Universidad de Nariño. Also, the authors acknowledge to the research project supported by Agreement No. 095 November 20th, 2014 by VIPRI from Universidad de Nariño.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Lasso-Arciniegas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lasso-Arciniegas, L. et al. (2018). Movement Identification in EMG Signals Using Machine Learning: A Comparative Study. In: Hernández Heredia, Y., Milián Núñez, V., Ruiz Shulcloper, J. (eds) Progress in Artificial Intelligence and Pattern Recognition. IWAIPR 2018. Lecture Notes in Computer Science(), vol 11047. Springer, Cham. https://doi.org/10.1007/978-3-030-01132-1_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-01132-1_42

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-01131-4

  • Online ISBN: 978-3-030-01132-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics