Skip to main content

An Integrated Deep Neural Network for Defect Detection in Dynamic Textile Textures

  • Conference paper
  • First Online:
Progress in Artificial Intelligence and Pattern Recognition (IWAIPR 2018)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11047))

Abstract

This paper presents a comprehensive defect detection method for two common fabric defects groups. Most existing systems require textiles to be spread out in order to detect defects. This method can be applied when the textiles are not spread out and does not require any pre- processing. The deep learning architecture we present is based on transfer learning and localizes and recognizes cuts, holes and stain defects. Classification and localization is combined into a single system combining two different networks. The experiments this paper presents show that even without adding depth information, the network was able to distinguish between stain and shadow. This method has been successful even for textiles in voluminous shape and is less computationally intensive than other state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Siegmund, D., Kaehm, O., Handtke, D.: Rapid classification of textile fabrics arranged in piles. In: Proceedings of the 13th International Joint Conference on e-Business and Telecommunications, pp. 99–105 (2016)

    Google Scholar 

  2. Borghese, N.A., Fomasi, M.: Automatic defect classification on a production line. Intell. Ind. Syst. 1, 373–393 (2015)

    Article  Google Scholar 

  3. Siegmund, D., Kuijper, A., Braun, A.: Stereo-image normalization of voluminous objects improves textile defect recognition. In: Bebis, G., et al. (eds.) ISVC 2016. LNCS, vol. 10072, pp. 181–192. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-50835-1_17

    Chapter  Google Scholar 

  4. Li, Y., Zhao, W., Pan, J.: Deformable patterned fabric defect detection with fisher criterion-based deep learning. IEEE Trans. Autom. Sci. Eng. 14, 1256–1264 (2017)

    Article  Google Scholar 

  5. Bay, H., Tuytelaars, T., Van Gool, L.: SURF: speeded up robust features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 404–417. Springer, Heidelberg (2006). https://doi.org/10.1007/11744023_32

    Chapter  Google Scholar 

  6. Siegmund, D., Samartzidis, T., Fu, B., Braun, A., Kuijper, A.: Fiber defect detection of inhomogeneous voluminous textiles. In: Carrasco-Ochoa, J.A., Martínez-Trinidad, J.F., Olvera-López, J.A. (eds.) MCPR 2017. LNCS, vol. 10267, pp. 278–287. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59226-8_27

    Chapter  Google Scholar 

  7. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86, 2278–2324 (1998)

    Article  Google Scholar 

  8. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, pp. 91–99 (2015)

    Google Scholar 

  9. Girshick, R.: Fast R-CNN. arXiv preprint arXiv:1504.08083 (2015)

  10. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)

    Google Scholar 

  11. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  12. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. CoRR abs/1409.1556 (2014)

    Google Scholar 

  13. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  14. Everingham, M., Eslami, S.A., Van Gool, L., Williams, C.K., Winn, J., Zisserman, A.: The pascal visual object classes challenge: a retrospective. Int. J. Comput. Vis. 111, 98–136 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the German Federal Ministry of Education and Research (BMBF) as well as by the Hessen State Ministry for Higher Education, Research and the Arts (HMWK) within CRISP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk Siegmund .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Siegmund, D., Prajapati, A., Kirchbuchner, F., Kuijper, A. (2018). An Integrated Deep Neural Network for Defect Detection in Dynamic Textile Textures. In: Hernández Heredia, Y., Milián Núñez, V., Ruiz Shulcloper, J. (eds) Progress in Artificial Intelligence and Pattern Recognition. IWAIPR 2018. Lecture Notes in Computer Science(), vol 11047. Springer, Cham. https://doi.org/10.1007/978-3-030-01132-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-01132-1_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-01131-4

  • Online ISBN: 978-3-030-01132-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics