Skip to main content

Nanocommunication System with a Laser Activated Molecular Film

  • Conference paper
  • First Online:
Internet of Things, Smart Spaces, and Next Generation Networks and Systems (NEW2AN 2018, ruSMART 2018)

Abstract

Molecular communication systems became a promising paradigm of modern nanonetworks. Quantum carrier transfer creates communication channels between parts of a molecule and/or connects a few domains inside a molecular metamaterial network. This manuscript presents our studies of such channels activated by means of modulated laser beam irradiation resulting in molecular fluorescence, probably at a shifted frequency. The acquisition system for the electromagnetic field generated by a molecule based on the novel dynamic pin-photo diode is characterized by a high sensitivity and a low noise level due to the signal amplitude-time function integration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Akan, O.B., Ramezani, H., Khan, T., Abbasi, N.A., Kuscu, M.: Fundamentals of molecular information and communication science. J. Proc. IEEE 105(2), 306–318 (2017)

    Article  Google Scholar 

  2. Bush, S.F.: Nanoscale Communication Networks. Artech House, Norwood (2010)

    Google Scholar 

  3. Walsh, F., Balasubramaniam, S., Botvich, D., Donnelly, W.: Synthetic protocols for nano sensor transmitting platforms using enzyme and DNA based computing. Nano Commun. Netw. 1(1), 50–62 (2010)

    Article  Google Scholar 

  4. Kuscu, M., Akan, O.B.: On the physical design of molecular communication receiver based on nanoscale biosensors. IEEE Sens. J. 16(8), 2228–2243 (2016)

    Article  Google Scholar 

  5. Kuscu, M., Akan, O.B.: The Internet of molecular things based on FRET. IEEE Internet Things J. 3(1), 4–17 (2016)

    Article  Google Scholar 

  6. Offenhäusser, A., Rinaldi, R.: Nanobioelectronics – for Electronics, Biology and Medicine. Springer, New York (2009). https://doi.org/10.1007/978-0-387-09459-5

    Book  Google Scholar 

  7. Akuildiz, I.F., Jornet, J.M.: Electromagnetic wireless nanosensor networks. J. Nanocommun. Netw. 1, 3–19 (2010)

    Google Scholar 

  8. Heath, J.R., Ratner, M.A.: Molecular electronics. J. Phys. Today 56(5), 43–49 (2003)

    Article  Google Scholar 

  9. Tsybin, O.: Nano-device with an embedded molecular film: mechanisms of excitation. In: Balandin, S., Andreev, S., Koucheryavy, Y. (eds.) ruSMART 2015. LNCS, vol. 9247, pp. 772–777. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23126-6_72

    Chapter  Google Scholar 

  10. Giné, P.L., Akyildiz, I.F.: Molecular communication options for long range nanonetworks. J. Comput. Netw. 53, 2753–2766 (2009)

    Article  Google Scholar 

  11. Okhonin, S., et al.: A dynamic operation of a PIN photodiode. J. Appl. Phys. Lett. 106, 031115 (2015)

    Article  Google Scholar 

  12. Sallin, D.: A low-voltage CMOS-compatible time-domain photodetector, device & front end electronics. Ph.D. thesis 6869, EPFL, Lausanne, Switzerland (2005)

    Google Scholar 

  13. Thoma, R., Hampp, N., Bräuchle, C., Oesterhelt, D.: Bacteriorhodopsin films as spatial light modulators for nonlinear-optical filtering. Opt. Lett. 16, 651–653 (1991)

    Article  Google Scholar 

  14. Tsybin, O.Y., Mishin, M.: Ion desorption from skin-current induced metal surface. ZTF Lett. 22(4), 21–24 (1996). (In Russian)

    Google Scholar 

  15. Zamiatin, A.V., Tsybin, O.Y.: Surface skin-current activated emission of electrons and ions. In: 20th International Workshop on Beam Dynamics and Optimization, BDO 2014, 6890100 (2014)

    Google Scholar 

  16. Merlo, J.M., et al.: Wireless communication system via nanoscale plasmonic antennas. Sci. Rep. 6, 31710 (2016)

    Article  Google Scholar 

  17. Le Ru, E.C., Etchegoin, P.: Principles of Surface-Enhanced Raman Spectroscopy: and Related Plasmonic, 1st edn. Elsevier, Amsterdam (2009)

    Google Scholar 

  18. ActLight: The future of light based electronics. http://act-light.com/technology. Accessed 19 May 2018

Download references

Acknowledgements

The authors are grateful to ActLight SA (Lausanne, Switzerland, [18]) for their donation of a pin photodiode for the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Velichko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Velichko, E., Savchenko, E., Nepomnyashchaya, E., Dyubo, D., Tsybin, O. (2018). Nanocommunication System with a Laser Activated Molecular Film. In: Galinina, O., Andreev, S., Balandin, S., Koucheryavy, Y. (eds) Internet of Things, Smart Spaces, and Next Generation Networks and Systems. NEW2AN ruSMART 2018 2018. Lecture Notes in Computer Science(), vol 11118. Springer, Cham. https://doi.org/10.1007/978-3-030-01168-0_59

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-01168-0_59

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-01167-3

  • Online ISBN: 978-3-030-01168-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics