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Fig. 1: Joint learning v.s. separate learning. Single-view depth prediction
and optical flow estimation are two highly correlated tasks. Existing work,
however, often addresses these two tasks in isolation. In this paper, we propose
a novel cross-task consistency loss to couple the training of these two problems
using unlabeled monocular videos. Through enforcing the underlying geometric
constraints, we show substantially improved results for both tasks.

Abstract. We present an unsupervised learning framework for simulta-
neously training single-view depth prediction and optical flow estimation
models using unlabeled video sequences. Existing unsupervised methods
often exploit brightness constancy and spatial smoothness priors to train
depth or flow models. In this paper, we propose to leverage geometric
consistency as additional supervisory signals. Our core idea is that for
rigid regions we can use the predicted scene depth and camera motion
to synthesize 2D optical flow by backprojecting the induced 3D scene
flow. The discrepancy between the rigid flow (from depth prediction and
camera motion) and the estimated flow (from optical flow model) allows
us to impose a cross-task consistency loss. While all the networks are
jointly optimized during training, they can be applied independently at
test time. Extensive experiments demonstrate that our depth and flow
models compare favorably with state-of-the-art unsupervised methods.

1 Introduction

Single-view depth prediction and optical flow estimation are two fundamental
problems in computer vision. While the two tasks aim to recover highly corre-
lated information from the scene (i.e., the scene structure and the dense motion
field between consecutive frames), existing efforts typically study each problem
in isolation. In this paper, we demonstrate the benefits of exploring the geometric
relationship between depth, camera motion, and flow for unsupervised learning
of depth and flow estimation models.
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Pixelwise ground truth Unlabeled video sequences (ours)

Fig. 2: Supervised v.s. unsupervised learning. Supervised learning of
depth or flow networks requires large amount of training data with pixelwise
ground truth annotations, which are difficult to acquire in real scenes. In
contrast, our work leverages the readily available unlabeled video sequences to
jointly train the depth and flow models.

With the rapid development of deep convolutional neural networks (CNNs),
numerous approaches have been proposed to tackle dense prediction problems
in an end-to-end manner. However, supervised training CNN for such tasks of-
ten involves in constructing large-scale, diverse datasets with dense pixelwise
ground truth labels. Collecting such densely labeled datasets in real-world re-
quires significant amounts of human efforts and is prone to error. Existing efforts
of RGB-D dataset construction [18,45,53,54] often have limited scope (e.g., in
terms of locations, scenes, and objects), and hence are lack of diversity. For
optical flow, dense motion annotations are even more difficult to acquire [37].
Consequently, existing CNN-based methods rely on synthetic datasets for train-
ing the models [5,12,16,24]. These synthetic datasets, however, do not capture
the complexity of motion blur, occlusion, and natural image statistics from real
scenes. The trained models usually do not generalize well to unseen scenes with-
out fine-tuning on sufficient ground truth data in a new visual domain.

Several work [17,21,28] have been proposed to capitalize on large-scale real-
world videos to train the CNNs in the unsupervised setting. The main idea
lies to exploit the brightness constancy and spatial smoothness assumptions of
flow fields or disparity maps as supervisory signals. These assumptions, however,
often do not hold at motion boundaries and hence makes the training unstable.

Many recent efforts [59,60,65,73] explore the geometric relationship between
the two problems. With the estimated depth and camera pose, these methods
can produce dense optical flow by backprojecting the 3D scene flow induced from
camera ego-motion. However, these methods implicitly assume perfect depth and
camera pose estimation when “synthesizing” the optical flow. The errors in either
depth or camera pose estimation inevitably produce inaccurate flow predictions.

In this paper, we present a technique for jointly learning a single-view depth
estimation model and a flow prediction model using unlabeled videos as shown
in Figure 2. Our key observation is that the predictions from depth, pose, and
optical flow should be consistent with each other. By exploiting this geometry
cue, we present a novel cross-task consistency loss that provides additional su-
pervisory signals for training both networks. We validate the effectiveness of
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the proposed approach through extensive experiments on several benchmark
datasets. Experimental results show that our joint training method significantly
improves the performance of both models (Figure 1). The proposed depth and
flow models compare favorably with state-of-the-art unsupervised methods.

We make the following contributions. (1) We propose an unsupervised learn-
ing framework to simultaneously train a depth prediction network and an optical
flow network. We achieve this by introducing a cross-task consistency loss that
enforces geometric consistency. (2) We show that through the proposed unsu-
pervised training our depth and flow models compare favorably with existing
unsupervised algorithms and achieve competitive performance with supervised
methods on several benchmark datasets. (3) We release the source code and pre-
trained models to facilitate future research: http://yuliang.vision/DF-Net/

2 Related Work

Supervised learning of depth and flow. Supervised learning using CNNs
has emerged to be an effective approach for depth and flow estimation to avoid
hand-crafted objective functions and computationally expensive optimization at
test time. The availability of RGB-D datasets and deep learning leads to a line
of work on single-view depth estimation [13,14,35,38,62,72]. While promising
results have been shown, these methods rely on the absolute ground truth depth
maps. These depth maps, however, are expensive and difficult to collect. Some
efforts [8,74] have been made to relax the difficulty of collecting absolute depth
by exploring learning from relative/ordinal depth annotations. Recent work also
explores gathering training datasets from web videos [7] or Internet photos [36]
using structure-from-motion and multi-view stereo algorithms.

Compared to ground truth depth datasets, constructing optical flow datasets
of diverse scenes in real-world is even more challenging. Consequently, existing
approaches [12,26,47] typically rely on synthetic datasets [5,12] for training. Due
to the limited scalability of constructing diverse, high-quality training data, fully
supervised approaches often require fine-tuning on sufficient ground truth labels
in new visual domains to perform well. In contrast, our approach leverages the
readily available real-world videos to jointly train the depth and flow models.
The ability to learn from unlabeled data enables unsupervised pre-training for
domains with limited amounts of ground truth data.

Self-supervised learning of depth and flow. To alleviate the dependency
on large-scale annotated datasets, several works have been proposed to exploit
the classical assumptions of brightness constancy and spatial smoothness on
the disparity map or the flow field [17,21,28,43,71]. The core idea is to treat
the estimated depth and flow as latent layers and use them to differentiably
warp the source frame to the target frame, where the source and target frames
can either be the stereo pair or two consecutive frames in a video sequence. A
photometric loss between the synthesized frame and the target frame can then
serve as an unsupervised proxy loss to train the network. Using photometric loss

http://yuliang.vision/DF-Net/
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alone, however, is not sufficient due to the ambiguity on textureless regions and
occlusion boundaries. Hence, the network training is often unstable and requires
careful hyper-parameter tuning of the loss functions. Our approach builds upon
existing unsupervised losses for training our depth and flow networks. We show
that the proposed cross-task consistency loss provides a sizable performance
boost over individually trained models.

Methods exploiting geometry cues. Recently, a number of work exploits
the geometric relationship between depth, camera pose, and flow for learning
depth or flow models [60,65,68,73]. These methods first estimate the depth of
the input images. Together with the estimated camera poses between two con-
secutive frames, these methods “synthesize” the flow field of rigid regions. The
synthesized flow from depth and pose can either be used for flow prediction in
rigid regions [60,65,68,48] as is or used for view synthesis to train depth model us-
ing monocular videos [73]. Additional cues such as surface normal [67], edge [66],
physical constraints [59] can be incorporated to further improve the performance.

These approaches exploit the inherent geometric relationship between struc-
ture and motion. However, the errors produced by either the depth or the camera
pose estimation propagate to flow predictions. Our key insight is that for rigid
regions the estimated flow (from flow prediction network) and the synthesized
rigid flow (from depth and camera pose networks) should be consistent. Con-
sequently, coupled training allows both depth and flow networks to learn from
each other and enforce geometrically consistent predictions of the scene.

Structure from motion. Joint estimation of structure and camera pose
from multiple images of a given scene is a long-standing problem [46,15,64].
Conventional methods can recover (semi-)dense depth estimation and camera
pose through keypoint tracking/matching. The outputs of these algorithms can
potentially be used to help train a flow network, but not the other way around.
Our work differs as we are also interested in learning a depth network to recover
dense structure from a single input image.

Multi-task learning. Simultaneously addressing multiple tasks through
multi-task learning [52] has shown advantages over methods that tackle indi-
vidual ones [70]. For examples, joint learning of video segmentation and optical
flow through layered models [6,56] or feature sharing [9] helps improve accu-
racy at motion boundaries. Single-view depth model learning can also benefit
from joint training with surface normal estimation [35,67] or semantic segmen-
tation [13,30].

Our approach tackles the problems of learning both depth and flow models.
Unlike existing multi-task learning methods that often require direct supervision
using ground truth training data for each task, our approach instead leverage
meta-supervision to couple the training of depth and flow models. While our
models are jointly trained, they can be applied independently at test time.
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Fig. 3: Overview of our unsupervised joint learning framework. Our
framework consists of three major modules: (1) a Depth Net for single-view
depth estimation; (2) a Pose Net that takes two stacked input frames and
estimates the relative camera pose between the two input frames; and (3) a
Flow Net that estimates dense optical flow field between the two input frames.
Given a pair of input images It and It+1 sampled from an unlabeled video, we
first estimate the depth of each frame, the 6D camera pose, and the dense
forward and backward flows. Using the predicted scene depth and the
estimated camera pose, we can synthesize 2D forward and backward optical
flows (referred as rigid flow) by backprojecting the induced 3D forward and
backward scene flows (Section 3.2). As we do not have ground truth depth and
flow maps for supervision, we leverage standard photometric and spatial
smoothness costs to regularize the network training (Section 3.3, not shown in
this figure for clarity). To enforce the consistency of flow and depth prediction
in both directions, we exploit the forward-backward consistency (Section 3.4),
and adopt the valid masks derived from it to filter out invalid regions (e.g.,
occlusion/dis-occlusion) for the photometric loss. Finally, we propose a novel
cross-network consistency loss (Section 3.5) — encouraging the optical flow
estimation (from the Flow Net) and the rigid flow (from the Depth and Pose
Net) to be consistent to each other within in valid regions.

3 Unsupervised Joint Learning of Depth and Flow

3.1 Method overview

Our goal is to develop an unsupervised learning framework for jointly training
the single-view depth estimation network and the optical flow prediction network
using unlabeled video sequences. Figure 3 shows the high-level sketch of our
proposed approach. Given two consecutive frames (It, It+1) sampled from an
unlabeled video, we first estimate depth of frame It and It+1, and forward-
backward optical flow fields between frame It and It+1. We then estimate the
6D camera pose transformation between the two frames (It, It+1).

With the predicted depth map and the estimated 6D camera pose, we can
produce the 3D scene flow induced from camera ego-motion and backproject
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them onto the image plane to synthesize the 2D flow (Section 3.2). We refer this
synthesized flow as rigid flow. Suppose the scenes are mostly static, the synthe-
sized rigid flow should be consistent with the results from the estimated optical
flow (produced by the optical flow prediction model). However, the prediction
results from the two branches may not be consistent with each other. Our in-
tuition is that the discrepancy between the rigid flow and the estimated flow
provides additional supervisory signals for both networks. Hence, we propose
a cross-task consistency loss to enforce this constraint (Section 3.5). To han-
dle non-rigid transformations that cannot be explained by the camera motion
and occlusion-disocclusion regions, we exploit the forward-backward consistency
check to identify valid regions (Section 3.4). We avoid enforcing the cross-task
consistency for those forward-backward inconsistent regions.

Our overall objective function can be formulated as follows:

L = Lphotometric + λsLsmooth + λfLforward-backward + λcLcross. (1)

All of the four loss terms are applied to both depth and flow networks. Also, all
of the four loss terms are symmetric for forward and backward directions, for
simplicity we only derive them for the forward direction.

3.2 Flow synthesis using depth and pose predictions

Given the two input frames It and It+1, the predicted depth map D̂t, and relative
camera pose T̂t→t+1, here we wish to establish the dense pixel correspondence
between the two frames. Let pt denotes the 2D homogeneous coordinate of an
pixel in frame It and K denotes the intrinsic camera matrix. We can compute
the corresponding point of pt in frame It+1 using the equation [73]:

pt+1 = KT̂t→t+1D̂t(pt)K
−1pt. (2)

We can then obtain the synthesized forward rigid flow at pixel pt in It by

Frigid(pt) = pt+1 − pt (3)

3.3 Brightness constancy and spatial smoothness priors

Here we briefly review two loss functions that we used in our framework to
regularize network training. Leveraging the brightness constancy and spatial
smoothness priors used in classical dense correspondence algorithms [4,23,40],
prior work has used the photometric discrepancy between the warped frame
and the target frame as an unsupervised proxy loss function for training CNNs
without ground truth annotations.

Photometric loss. Suppose that we have frame It and It+1, as well as
the estimated flow Ft→t+1 (either from the optical flow predicted from the flow
model or the synthesized rigid flow induced from the estimated depth and camera
pose), we can produce the warped frame Īt with the inverse warping from frame
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It+1. Note that the projected image coordinates pt+1 might not lie exactly on the
image pixel grid, we thus apply a differentiable bilinear interpolation strategy
used in the spatial transformer networks [27] to perform frame synthesis.

With the warped frame Īt from It+1, we formulate the brightness constancy
objective function as

Lphotometric =
∑
p

ρ
(
It(p), Īt(p)

)
. (4)

where ρ(·) is a function to measure the difference between pixel values. Previous
work simply choose L1 norm or the appearance matching loss [21], which is not
invariant to illumination changes in real-world scenarios [61]. Here we adopt the
ternary census transform based loss [43,55,69] that can better handle complex
illumination changes.

Smoothness loss. The brightness constancy loss is not informative in low-
texture or homogeneous region of the scene. To handle this issue, existing work
incorporates a smoothness prior to regularize the estimated disparity map or
flow field. We adopt the spatial smoothness loss as proposed in [21].

3.4 Forward-backward consistency

According to the brightness constancy assumption, the warped frame should be
similar to the target frame. However, the assumption does not hold for occluded
and dis-occluded regions. We address this problem by using the commonly used
forward-backward consistency check technique to identify invalid regions and do
not impose the photometric loss on those regions.

Valid masks. We implement the occlusion detection based on forward-
backward consistency assumption [58] (i.e., traversing flow vector forward and
then backward should arrive at the same position). Here we use a simple criterion
proposed in [43]. We mark pixels as invalid whenever this constraint is violated.
Figure 4 shows two examples of the marked invalid regions by forward-backward
consistency check using the synthesized rigid flow (animations can be viewed in
Adobe Reader).

Denote the valid region by V (either from rigid flow or estimated flow), we
can modify the photometric loss term (4) as

Lphotometric =
∑
p∈V

ρ
(
It(p), Īt(p)

)
. (5)

Forward-backward consistency loss. In addition to using forward-backward
consistency check for identifying invalid regions, we can further impose con-
straints on the valid regions so that the network can produce consistent pre-
dictions for both forward and backward directions. Similar ideas have been ex-
ploited in [25,43] for occlusion-aware flow estimation. Here, we apply the forward-
backward consistency loss to both flow and depth predictions.
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Input frames Invalid masks by rigid flow

Fig. 4: Valid mask visualization. We estimate the invalid mask by checking
the forward-backward consistency from the synthesized rigid flow, which can
not only detect occluded regions, but also identify the moving objects (cars) as
they cannot be explained by the estimated depth and pose. Animations can be
viewed in Adobe Reader.

For flow prediction, the forward-backward consistency loss is of the form:

Lforward-backward, flow =
∑

p∈Vflow

||Ft→t+1(p) + Ft+1→t(p+ Ft→t+1(p))| |1 (6)

Similarly, we impose a consistency penalty for depth:

Lforward-backward, depth =
∑

p∈Vdepth

||Dt(p)− D̄t(p)||1 (7)

where D̄t is warped from Dt+1 using the synthesized rigid flow from t to t+ 1.
While we exploit robust functions for enforcing photometric loss, forward-

backward consistency for each of the tasks, the training of depth and flow net-
works using unlabeled data remains non-trivial and sensitive to the choice of
hyper-parameters [33]. Building upon the existing loss functions, in the follow-
ing we introduce a novel cross-task consistency loss to further regularize the
network training.

3.5 Cross-task consistency

In Section 3.2, we show that the motion of rigid regions in the scene can be
explained by the ego-motion of the camera and the corresponding scene depth.
On the one hand, we can estimate the rigid flow by backprojecting the induced
3D scene flow from the estimated depth and relative camera pose. On the other
hand, we have direct estimation results from an optical flow network. Our core
idea is the that these two flow fields should be consistent with each other for
non-occluded and static regions. Minimizing the discrepancy between the two
flow fields allows us to simultaneously update the depth and flow models.

We thus propose to minimize the endpoint distance between the flow vectors
in the rigid flow (computed from the estimated depth and pose) and that in
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the estimated flow (computed from the flow prediction model). We denote the
synthesized rigid flow as Frigid = (urigid, vrigid) and the estimated flow as Fflow =
(uflow, vflow). Using the computed valid masks (Section 3.4), we impose the cross-
task consistency constraints over valid pixels.

Lcross =
∑

p∈Vdepth∩Vflow

||Frigid(p)− Fflow(p)||1 (8)

4 Experimental Results

In this section, we validate the effectiveness of our proposed method for unsu-
pervised learning of depth and flow on several standard benchmark datasets.
More results can be found in the supplementary material. Our source code and
pre-trained models are available on http://yuliang.vision/DF-Net/.

4.1 Datasets

Datasets for joint network training. We use video clips from the train split
of KITTI raw dataset [18] for joint learning of depth and flow models. Note that
our training does not involve any depth/flow labels.

Datasets for pre-training. To avoid the joint training process converging
to trivial solutions, we (unsupervisedly) pre-train the flow network on the SYN-
THIA dataset [51]. For pre-training both depth and pose networks, we use either
KITTI raw dataset or the CityScapes dataset [11] .

The SYNTHIA dataset [51] contains multi-view frames captured by driving
vehicles in different scenarios and traffic conditions. We take all the four-view
images of the left camera from all summer and winter driving sequences, which
contains around 37K image pairs. The CityScapes dataset [11] contains real-
world driving sequences, we follow Zhou et al. [73] and pre-process the dataset
to generate around 75K training image pairs.

Datasets for evaluation. For evaluating the performance of our depth
network, we use the test split of the KITTI raw dataset. The depth maps for
KITTI raw are sampled at irregularly spaced positions, captured using a rotating
LIDAR scanner. Following the standard evaluation protocol, we evaluate the
performance using only the regions with ground truth depth samples (bottom
parts of the images). We also evaluate the generalization of our depth network
on general scenes using the Make3D dataset [53].

For evaluating our flow network, we use the challenging KITTI flow 2012 [19]
and KITTI flow 2015 [44] datasets. The ground truth optical flow is obtained
from a 3D laser scanner and thus only covers about 50% of the pixels.

4.2 Implementation details

We implement our approach in TensorFlow [1] and conduct all the experiments
on a single Tesla K80 GPU with 12GB memory. We set λs = 3.0, λf = 0.2, and

http://yuliang.vision/DF-Net/
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Input Ground truth Eigen et al. [14] Zhou et al. [73] Ours

Fig. 5: Sample results on KITTI raw test set. The ground truth depth is
interpolated from sparse point cloud for visualization only. Compared to
Zhou et al. [73] and Eigen et al. [14], our method can better capture object
contour and thin structures.

λc = 0.2. For network training, we use the Adam optimizer [31] with β1 = 0.9,
β2 = 0.99. In the following, we provide more implementation details in network
architecture, network pre-training, and the proposed unsupervised joint training.

Network architecture. For the pose network, we adopt the architecture
from Zhou et al. [73]. For the depth network, we use the ResNet-50 [22] as our
feature backbone with ELU [10] activation functions. For the flow network, we
adopt the UnFlow-C structure [43] — a variant of FlowNetC [12]. As our network
training is model-agnostic, more advanced network architectures (e.g., pose [20],
depth [36], or flow [57]) can be used for further improving the performance.

Unsupervised depth pre-training. We train the depth and pose networks
with a mini-batch size of 6 image pairs whose size is 576× 160, from KITTI raw
dataset or CityScapes dataset for 100K iterations. We use a learning rate is 2e-4.
Each iteration takes around 0.8s (forward and backprop) during training.

Unsupervised flow pre-training. Following Meister et al. [43], we train
the flow network with a mini-batch size of 4 image pairs whose size is 1152×320
from SYNTHIA dataset for 300K iterations. We keep the initial learning rate as
1e-4 for the first 100K iterations and then reduce the learning rate by half after
each 100K iterations. Each iteration takes around 2.4s (forward and backprop).

Unsupervised joint training. We jointly train the depth, pose, and flow
networks with a mini-batch size of 4 image pairs from KITTI raw dataset for
100K iterations. Input size for the depth and pose networks is 576× 160, while
the input size for the flow network is 1152× 320. We divide the initial learning
rate by 2 for every 20K iterations. Our depth network produces depth predictions
at 4 spatial scales, while the flow network produces flow fields at 5 scales. We
enforce the cross-network consistency in the finest 4 scales. Each iteration takes
around 3.6s (forward and backprop) during training.
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Table 1: Single-view depth estimation results on test split of KITTI raw
dataset [18]. The methods trained on KITTI raw dataset [18] are denoted by
K. Models with additional training data from CityScapes [11] are denoted by
CS+K. (D) denotes depth supervision, (B) denotes stereo input pairs, (M)
denotes monocular video clips . The best and the second best performance in
each block are highlighted as bold and underline.

Error metric ↓ Accuracy metric ↑
Method Dataset Abs Rel Sq Rel RMSE log RMSE δ < 1.25 δ < 1.252 δ < 1.253

Eigen et al. [14] K (D) 0.203 1.548 6.307 0.246 0.702 0.890 0.958
Kuznietsov et al. [32] K (B) / K (D) 0.113 0.741 4.621 0.189 0.862 0.960 0.986
Zhan et al. [71] K (B) 0.144 1.391 5.869 0.241 0.803 0.928 0.969
Godard et al. [21] K (B) 0.133 1.140 5.527 0.229 0.830 0.936 0.970
Godard et al. [21] CS+K (B) 0.121 1.032 5.200 0.215 0.854 0.944 0.973

Zhou et al. [73] K (M) 0.208 1.768 6.856 0.283 0.678 0.885 0.957
Yang et al. [67] K (M) 0.182 1.481 6.501 0.267 0.725 0.906 0.963
Mahjourian et al. [41] K (M) 0.163 1.240 6.220 0.250 0.762 0.916 0.968
Yang et al. [66] K (M) 0.162 1.352 6.276 0.252 - - -
Yin et al. [68] K (M) 0.155 1.296 5.857 0.233 0.793 0.931 0.973
Godard et al. [20] K (M) 0.154 1.218 5.699 0.231 0.798 0.932 0.973
Ours (w/o forward-backward) K (M) 0.160 1.256 5.555 0.226 0.796 0.931 0.973
Ours (w/o cross-task) K (M) 0.160 1.234 5.508 0.225 0.800 0.932 0.972
Ours K (M) 0.150 1.124 5.507 0.223 0.806 0.933 0.973

Zhou et al. [73] CS+K (M) 0.198 1.836 6.565 0.275 0.718 0.901 0.960
Yang et al. [67] CS+K (M) 0.165 1.360 6.641 0.248 0.750 0.914 0.969
Mahjourian et al. [41] CS+K (M) 0.159 1.231 5.912 0.243 0.784 0.923 0.970
Yang et al. [66] CS+K (M) 0.159 1.345 6.254 0.247 - - -
Yin et al. [68] CS+K (M) 0.153 1.328 5.737 0.232 0.802 0.934 0.972
Ours (w/o forward-backward) CS+K (M) 0.159 1.716 5.616 0.222 0.805 0.939 0.976
Ours (w/o cross-task) CS+K (M) 0.155 1.181 5.301 0.218 0.805 0.939 0.977
Ours CS+K (M) 0.146 1.182 5.215 0.213 0.818 0.943 0.978

Image resolution of network inputs/outputs. As the input size of the
UnFlow-C network [43] must be divisible by 64, we resize input image pairs of
the two KITTI flow datasets to 1280×384 using bilinear interpolation. We then
resize the estimated optical flow and rescale the predicted flow vectors to match
the original input size. For depth estimation, we resize the input image to the
same size of training input to predict the disparity first. We then resize and
rescale the predicted disparity to the original size and compute the inverse the
obtain the final prediction.

4.3 Evaluation metrics

Following Zhou et al. [73], we evaluate our depth network using several error met-
rics (absolute relative difference, square related difference, RMSE, log RMSE).
For optical flow estimation, we compute the average endpoint error (EPE) on
pixels with the ground truth flow available for each dataset. On KITTI flow 2015
dataset [44], we also compute the F1 score, which is the percentage of pixels that
have EPE greater than 3 pixels and 5% of the ground truth value.
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4.4 Experimental evaluation

Single-view depth estimation. We compare our depth network with state-
of-the-art algorithms on the test split of the KITTI raw dataset provided by
Eigen et al. [14]. As shown in Table 1, our method achieves the state-of-the-
art performance when compared with models trained with monocular video se-
quences. However, our method performs slightly worse than the models that
exploit calibrated stereo image pairs (i.e., pose supervision) or with additional
ground truth depth annotation. We believe that performance gap can be at-
tributed to the error induced by our pose network. Extending our approach to
calibrated stereo videos is an interesting future direction.

We also conduct an ablation study by removing the forward-backward con-
sistency loss or cross-task consistency loss. In both cases our results show sig-
nificant performance of degradation, highlighting the importance the proposed
consistency loss. Figure 5 shows qualitative comparison with [14,73], our method
can better capture thin structure and delineate clear object contour.

To evaluate the generalization ability of our depth network on general scenes,
we also apply our trained model to the Make3D dataset [53]. Table 2 shows that
our method achieves the state-of-the-art performance compared with existing un-
supervised models and is competitive with respect to supervised learning models
(even without fine-tuning on Make3D datasets).

Table 2: Results on the Make3D dataset [54]. Our results were obtained
by the model trained on Cityscapes + KITTI without fine-tuning on the
training images in Make3D. Following the evaluation protocol of [21], the
errors are only computed where depth is less than 70 meters. The best and the
second best performance in each block are highlighted as bold and underline.

Error metric ↓
Method Supervision Abs Rel Sq Rel RMSE log RMSE

Train set mean - 0.876 12.98 12.27 0.307
Karsch et al. [29] depth 0.428 5.079 8.389 0.149
Liu et al. [39] depth 0.475 6.562 10.05 0.165
Laina et al. [34] depth 0.204 1.840 5.683 0.084
Li et al. [36] depth 0.176 - 4.260 0.069

Godard et al. [21] pose 0.544 10.94 11.76 0.193
Zhou et al. [73] none 0.383 5.321 10.47 0.478
Ours none 0.331 2.698 6.89 0.416

Optical flow estimation. We compare our flow network with conventional
variational algorithms, supervised CNN methods, and several unsupervised CNN
models on the KITTI flow 2012 and 2015 datasets. As shown in Table 3, our
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Table 3: Quantitative evaluation on optical flow. Results on KITTI flow
2012 [19] , KITTI flow 2015 [44] datasets. We denote “C” as the FlyingChairs
dataset [12], “T” as the FlyingThings3D dataset [42], “K” as the KITTI raw
dataset [18], “SYN” as the SYNTHIA dataset [51]. (S) indicates that the
model is trained with ground truth annotation, while (U) indicates the model
is trained in an unsupervised manner. The best and the second best
performance in each block are highlighted as bold and underline.

KITTI 2012 KITTI 2015

Train Test Train Train Test
Method Dataset EPE EPE EPE F1 F1

LDOF [3] - 10.94 12.4 18.19 38.05% -
DeepFlow [63] - 4.58 5.8 10.63 26.52% 29.18%
EpicFlow [50] - 3.47 3.8 9.27 27.18% 27.10%
FlowField [2] - 3.33 - 8.33 24.43% -

FlowNetS [12] C (S) 8.26 - 15.44 52.86% -
FlowNetC [12] C (S) 9.35 - 12.52 47.93% -
SpyNet [47] C (S) 9.12 - 20.56 44.78% -
SemiFlowGAN [33] C (S) / K (U) 7.16 - 16.02 38.77% -
FlowNet2 [26] C (S) + T (S) 4.09 - 10.06 30.37% -

UnsupFlownet [28] C (U) + K (U) 11.3 9.9 - - -
DSTFlow [49] C (U) 16.98 - 24.30 52.00% -
DSTFlow [49] K (U) 10.43 12.4 16.79 36.00% 39.00%
Yin et al. [68] K (U) - - 10.81 - -
UnFlowC [43] SYN (U) + K (U) 3.78 4.5 8.80 28.94% 29.46%
Ours (w/o forward-backward) SYN (U) + K (U) 3.86 4.7 9.12 26.27% 26.90%
Ours (w/o cross-task) SYN (U) + K (U) 4.70 5.8 8.95 28.37% 30.03%
Ours SYN (U) + K (U) 3.54 4.4 8.98 26.01% 25.70%

FlowNet2-ft-kitti [26] C (S) + T (S) + K (S) (1.28) 1.8 (2.30) (8.61%) 11.48%

UnFlowCSS-ft-kitti [43] SYN (U) + K (U) + K (S) (1.14) 1.7 (1.86) (7.40%) 11.11%
UnFlowC-ft-kitti [43] SYN (U) + K (U) + K (S) (2.13) 3.0 (3.67) (17.78%) 24.20%
Ours-ft-kitti SYN (U) + K (U) + K (S) (1.75) 3.0 (2.85) (13.47%) 22.82%

Table 4: Pose estimation results on KITTI Odometry datest [19].

Seq. 09 Seq. 10

ORB-SLAM (full) 0.014±0.008 0.012±0.011

ORB-SLAM (short) 0.064±0.141 0.064±0.130
Mean Odom. 0.032±0.026 0.028±0.023
Zhou et al. [73] 0.021±0.017 0.020±0.015
Mahjourian et al. [41] 0.013±0.010 0.012±0.011
Yin et al. [68] 0.012±0.007 0.012±0.009
Ours 0.017±0.007 0.015±0.009
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Input Ground truth FlowNetS FlowNetC UnFlow-C Ours

Fig. 6: Visual results on KITTI flow datasets. All the models are directly
applied without fine-tuning on KITTI flow annotations. Our model delineates
clearer object contours compared to both supervised/unsupervised methods.

method achieves state-of-the-art performance on both datasets. A visual com-
parison can be found in Figure 6. With optional fine-tuning on available ground
truth labels on the KITTI flow datasets, we show that our approach achieves
competitive performance sharing similar network architectures. This suggests
that our method can serve as an unsupervised pre-training technique for learn-
ing optical flow in domains where the amounts of ground truth data are scarce.

Pose estimation. For completeness, we provide the performance evaluation
of the pose network. We follow the same evaluation protocol as [73] and use
a 5-frame based pose network. As shown in Table 4, our pose network shows
competitive performance with respect to state-of-the-art visual SLAM methods
or other unsupervised learning methods. We believe that a better pose network
would further improve the performance of both depth or optical flow estimation.

5 Conclusions

We presented an unsupervised learning framework for both sing-view depth pre-
diction and optical flow estimation using unlabeled video sequences. Our key
technical contribution lies in the proposed cross-task consistency that couples
the network training. At test time, the trained depth and flow models can be
applied independently. We validate the benefits of joint training through ex-
tensive experiments on benchmark datasets. Our single-view depth prediction
model compares favorably against existing unsupervised models using unstruc-
tured videos on both KITTI and Make3D datasets. Our flow estimation model
achieves competitive performance with state-of-the-art approaches. By lever-
aging geometric constraints, our work suggests a promising future direction of
advancing the state-of-the-art in multiple dense prediction tasks using unlabeled
data.
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Smagt, P., Cremers, D., Brox, T.: FlowNet: Learning optical flow with convolu-
tional networks. In: ICCV (2015) 2, 3, 10, 13

13. Eigen, D., Fergus, R.: Predicting depth, surface normals and semantic labels with
a common multi-scale convolutional architecture. In: ICCV (2015) 3, 4

14. Eigen, D., Puhrsch, C., Fergus, R.: Depth map prediction from a single image using
a multi-scale deep network. In: NIPS (2014) 3, 10, 11, 12

15. Furukawa, Y., Curless, B., Seitz, S.M., Szeliski, R.: Towards internet-scale multi-
view stereo. In: CVPR (2010) 4

16. Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object
tracking analysis. In: CVPR (2016) 2

17. Garg, R., Carneiro, G., Reid, I.: Unsupervised cnn for single view depth estimation:
Geometry to the rescue. In: ECCV (2016) 2, 3

18. Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The kitti
dataset. IJRR (2013) 2, 9, 11, 13

19. Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? the kitti
vision benchmark suite. In: CVPR (2012) 9, 13

20. Godard, C., Mac Aodha, O., Brostow, G.: Digging into self-supervised monocular
depth estimation. arXiv preprint arXiv:1806.01260 (2018) 10, 11

21. Godard, C., Mac Aodha, O., Brostow, G.J.: Unsupervised monocular depth esti-
mation with left-right consistency. In: CVPR (2017) 2, 3, 7, 11, 12

22. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: CVPR (2016) 10



16 Y. Zou, Z. Luo, and J.-B. Huang

23. Horn, B.K., Schunck, B.G.: Determining optical flow. Artificial intelligence 17(1-3),
185–203 (1981) 6

24. Huang, P.H., Matzen, K., Kopf, J., Ahuja, N., Huang, J.B.: DeepMVS: Learning
multi-view stereopsis. In: CVPR (2018) 2

25. Hur, J., Roth, S.: MirrorFlow: Exploiting symmetries in joint optical flow and
occlusion estimation. In: ICCV (2017) 7

26. Ilg, E., Mayer, N., Saikia, T., Keuper, M., Dosovitskiy, A., Brox, T.: Flownet 2.0:
Evolution of optical flow estimation with deep networks. In: CVPR (2017) 3, 13

27. Jaderberg, M., Simonyan, K., Zisserman, A., Kavukcuoglu, K.: Spatial transformer
networks. In: NIPS (2015) 7

28. Jason, J.Y., Harley, A.W., Derpanis, K.G.: Back to basics: Unsupervised learning of
optical flow via brightness constancy and motion smoothness. In: ECCV Workshop
(2016) 2, 3, 13

29. Karsch, K., Liu, C., Kang, S.B.: Depth transfer: Depth extraction from video using
non-parametric sampling. TPAMI 36(11), 2144–2158 (2014) 12

30. Kendall, A., Gal, Y., Cipolla, R.: Multi-task learning using uncertainty to weigh
losses for scene geometry and semantics. In: NIPS (2017) 4

31. Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: ICLR (2014)
10

32. Kuznietsov, Y., Stückler, J., Leibe, B.: Semi-supervised deep learning for monoc-
ular depth map prediction. In: CVPR (2017) 11

33. Lai, W.S., Huang, J.B., Yang, M.H.: Semi-supervised learning for optical flow with
generative adversarial networks. In: NIPS (2017) 8, 13

34. Laina, I., Rupprecht, C., Belagiannis, V., Tombari, F., Navab, N.: Deeper depth
prediction with fully convolutional residual networks. In: 3DV (2016) 12

35. Li, B., Shen, C., Dai, Y., van den Hengel, A., He, M.: Depth and surface normal es-
timation from monocular images using regression on deep features and hierarchical
crfs. In: CVPR (2015) 3, 4

36. Li, Z., Snavely, N.: MegaDepth: Learning single-view depth prediction from internet
photos. In: CVPR (2018) 3, 10, 12

37. Liu, C., Freeman, W.T., Adelson, E.H., Weiss, Y.: Human-assisted motion anno-
tation. In: CVPR (2008) 2

38. Liu, F., Shen, C., Lin, G.: Deep convolutional neural fields for depth estimation
from a single image. In: CVPR (2015) 3

39. Liu, M., Salzmann, M., He, X.: Discrete-continuous depth estimation from a single
image. In: CVPR (2014) 12

40. Lucas, B.D., Kanade, T., et al.: An iterative image registration technique with an
application to stereo vision. In: IJCAI (1981) 6

41. Mahjourian, R., Wicke, M., Angelova, A.: Unsupervised learning of depth and ego-
motion from monocular video using 3d geometric constraints. In: CVPR (2018) 11,
13

42. Mayer, N., Ilg, E., Hausser, P., Fischer, P., Cremers, D., Dosovitskiy, A., Brox,
T.: A large dataset to train convolutional networks for disparity, optical flow, and
scene flow estimation. In: CVPR (2016) 13

43. Meister, S., Hur, J., Roth, S.: UnFlow: Unsupervised learning of optical flow with
a bidirectional census loss. In: AAAI (2018) 3, 7, 10, 11, 13

44. Menze, M., Geiger, A.: Object scene flow for autonomous vehicles. In: CVPR (2015)
9, 11, 13

45. Nathan Silberman, Derek Hoiem, P.K., Fergus, R.: Indoor segmentation and sup-
port inference from rgbd images. In: ECCV (2012) 2



Unsupervised Joint Learning using Cross-Task Consistency 17

46. Newcombe, R.A., Lovegrove, S.J., Davison, A.J.: DTAM: Dense tracking and map-
ping in real-time. In: ICCV (2011) 4

47. Ranjan, A., Black, M.J.: Optical flow estimation using a spatial pyramid network.
In: CVPR (2017) 3, 13

48. Ranjan, A., Jampani, V., Kim, K., Sun, D., Wulff, J., Black, M.J.: Adversarial
Collaboration: Joint unsupervised learning of depth, camera motion, optical flow
and motion segmentation. arXiv preprint arXiv:1805.09806 (2018) 4

49. Ren, Z., Yan, J., Ni, B., Liu, B., Yang, X., Zha, H.: Unsupervised deep learning
for optical flow estimation. In: AAAI (2017) 13

50. Revaud, J., Weinzaepfel, P., Harchaoui, Z., Schmid, C.: Epicflow: Edge-preserving
interpolation of correspondences for optical flow. In: CVPR (2015) 13

51. Ros, G., Sellart, L., Materzynska, J., Vazquez, D., Lopez, A.M.: The synthia
dataset: A large collection of synthetic images for semantic segmentation of ur-
ban scenes. In: CVPR (2016) 9, 13

52. Ruder, S.: An overview of multi-task learning in deep neural networks. arXiv
preprint arXiv:1706.05098 (2017) 4

53. Saxena, A., Chung, S.H., Ng, A.Y.: Learning depth from single monocular images.
In: NIPS (2006) 2, 9, 12

54. Saxena, A., Chung, S.H., Ng, A.Y.: 3-d depth reconstruction from a single still
image. IJCV 76(1), 53–69 (2008) 2, 12

55. Stein, F.: Efficient computation of optical flow using the census transform. In:
DAGM (2004) 7

56. Sun, D., Wulff, J., Sudderth, E.B., Pfister, H., Black, M.J.: A fully-connected
layered model of foreground and background flow. In: CVPR (2013) 4

57. Sun, D., Yang, X., Liu, M.Y., Kautz, J.: PWC-net: Cnns for optical flow using
pyramid, warping, and cost volume. In: CVPR (2018) 10

58. Sundaram, N., Brox, T., Keutzer, K.: Dense point trajectories by gpu-accelerated
large displacement optical flow. In: ECCV (2010) 7

59. Tung, H.Y.F., Harley, A., Seto, W., Fragkiadaki, K.: Adversarial Inversion: Inverse
graphics with adversarial priors. In: ICCV (2017) 2, 4

60. Vijayanarasimhan, S., Ricco, S., Schmid, C., Sukthankar, R., Fragkiadaki, K.: Sfm-
net: Learning of structure and motion from video. arXiv preprint arXiv:1704.07804
(2017) 2, 4

61. Vogel, C., Roth, S., Schindler, K.: An evaluation of data costs for optical flow. In:
GCPR (2013) 7

62. Wang, P., Shen, X., Lin, Z., Cohen, S., Price, B., Yuille, A.L.: Towards unified
depth and semantic prediction from a single image. In: CVPR (2015) 3

63. Weinzaepfel, P., Revaud, J., Harchaoui, Z., Schmid, C.: DeepFlow: Large displace-
ment optical flow with deep matching. In: ICCV (2013) 13

64. Wu, C.: Visualsfm: A visual structure from motion system (2011) 4
65. Wulff, J., Sevilla-Lara, L., Black, M.J.: Optical flow in mostly rigid scenes. In:

CVPR (2017) 2, 4
66. Yang, Z., Wang, P., Wang, Y., Xu, W., Nevatia, R.: LEGO: Learning edge with

geometry all at once by watching videos. In: CVPR (2018) 4, 11
67. Yang, Z., Wang, P., Xu, W., Zhao, L., Nevatia, R.: Unsupervised learning of ge-

ometry with edge-aware depth-normal consistency. In: AAAI (2018) 4, 11
68. Yin, Z., Shi, J.: GeoNet: Unsupervised learning of dense depth, optical flow and

camera pose. In: CVPR (2018) 4, 11, 13
69. Zabih, R., Woodfill, J.: Non-parametric local transforms for computing visual cor-

respondence. In: ECCV (1994) 7



18 Y. Zou, Z. Luo, and J.-B. Huang

70. Zamir, A.R., Sax, A., Shen, W., Guibas, L., Malik, J., Savarese, S.: Taskonomy:
Disentangling task transfer learning. In: CVPR (2018) 4

71. Zhan, H., Garg, R., Weerasekera, C.S., Li, K., Agarwal, H., Reid, I.: Unsupervised
learning of monocular depth estimation and visual odometry with deep feature
reconstruction. In: CVPR (2018) 3, 11

72. Zhang, Z., Schwing, A.G., Fidler, S., Urtasun, R.: Monocular object instance seg-
mentation and depth ordering with cnns. In: ICCV (2015) 3

73. Zhou, T., Brown, M., Snavely, N., Lowe, D.G.: Unsupervised learning of depth and
ego-motion from video. In: CVPR (2017) 2, 4, 6, 9, 10, 11, 12, 13, 14

74. Zoran, D., Isola, P., Krishnan, D., Freeman, W.T.: Learning ordinal relationships
for mid-level vision. In: ICCV (2015) 3


	0.0: 
	0.1: 
	0.2: 
	0.3: 
	0.4: 
	0.5: 
	0.6: 
	anm0: 
	1.0: 
	1.1: 
	1.2: 
	1.3: 
	1.4: 
	1.5: 
	1.6: 
	anm1: 
	2.0: 
	2.1: 
	2.2: 
	2.3: 
	2.4: 
	2.5: 
	anm2: 
	3.0: 
	3.1: 
	3.2: 
	3.3: 
	3.4: 
	3.5: 
	anm3: 


