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Abstract. Repetition measurements from different sources often occur
in data analysis which need to be model and keep track of the origi-
nal sources. Moreover, data are usually collected as finite vectors which
need to be considered as a sample from some certain continuous signal.
Actually, these collected finite vectors can be effectively modeled by the
mixture of Gaussian processes (MGP) and the key problem is how to
make model selection on a given dataset. In fact, model selection predic-
tion of MGP has been investigated by the RJMCMC method. However,
the split and merge formula of the RJMCMC method are designed only
for the univariables in the past. In this paper, we extend the split and
merge formula to the situation of the multivariables. Moreover, we add
a Metropolis-Hastings update rule after the RJMCMC process to speed
up the convergence. It is demonstrated by simulation experiments that
our improved RJMCMC method is feasible and effective.

Key words: RJMCMC, Mixture of Gaussian processes, multivariable
regression.

1 Introduction

In real applications, data often come as measure curves or time series. Although
these are gathered as finite points, it is valuable to consider them as sample
or trajectories of stochastic processes. In [1], the batch curves are considered
from a mixture of Gaussian processes to describe its heterogeneity. However,
the problem of well-known model selection for the mixture model comes, which
can be solved with BIC criterion [2]. But this method can only make inference
about the parameters in a fixed dimension parameter subspace and is weak on
exploring the low probability area between the neighbourhood subspaces.

Reversible Jump Markov Chain Monte Carlo(RJMCMC)[3] is one of the
most important method among Markov chain Monte Carlo simulation methods.
It can not only make inference about parameters but also make model selec-
tion prediction. Since this simulation method explores the different parameter
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subspaces with varied dimension, it can prevent the solution to be trapped into
local optimum. In [5], we proposed the RJMCMC method for automatic model
selection or prediction for mixtures of Gaussian processes and demonstrated its
effectiveness. Based on it, we try to extend the split and merge formula of the
RJMCMC method from the single-input case to the multi-input case to adapt
to more complex or general situation.

our paper is organized as follows. We introduce the mixture of Gaussian
processes and their latent variables in Section 2. Section 3 reviews the five type
of moves of the parameters and extends the split and formula to the multi-input
situation. We demonstrate our improved RJMCMC on simulated data in section
4. Finally, we conclude briefly in section 5.

2 The Mixture of Gaussian Processes and Its Latent
Variables

Suppose that M curves are given and the response ym(t) for the m-th curve is
defined as:

ym(t) = τm(t) + εm(t) (1)

where τm(t) is a Gaussian process and εm(t) is a noise term. For the m−th
curve, the time points at which we collect data are (tm,1, · · · , tm,Nm) and the
target values are (ym,1, · · · , ym,Nm

) = (ym(tm,1), · · · , ym(tm,Nm
)), where Nm is

the total number of observations on this curve. Then this curve can be considered
as a sample curve or trajectory of the corresponding Gaussian process [1].

Moreover, data are assumed coming from different source and mixture struc-
ture are constructed to model the heterogeneity. For the dataset {(xm,n, ym,n),m =
1, · · · ,M, n = 1, · · · , Nm}, the likelihood is as follows

L(θ,p|Y,X) =

M∏
m=1

K∑
k=1

pkN (Y ;µk(X), Σk(X)) (2)

where K is the total number of the mixtures, µk and Σk are the mean function
and covariance function. Specially, the covariance function is defined as follows:

Σk(xi, xj ; θk) = vk exp

(
−wk

(xi − xj)2

2

)
+ δijσ

2
k (3)

here θk = (vk, wk, σ
2
k) and each parameters are positive on R.

As usual, auxiliary variables [6] zm is the index variable and zm = k indicate
the m-th curve belong to the k-th component. Then the completion of model is:

Zm ∼Mk(1;
1

n
, · · · , 1

n︸ ︷︷ ︸
Krepetitions

), ym|xm, zm,θ ∼ N (µk(xm), Σ(xm; θk)|zm = k) (4)
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From the Bayesian point of view, the prior of parameters should also be set,
and the posterior is proportional to the prior multiples likelihood. For conve-
nience of the derivation, the prior is set to be the conjugate prior:

wk ∼ IΓ (
1

2
,

1

2
), vk ∼ LN (−1, 12), σ2

k ∼ LN (−3, 32) (5)

where IΓ represents inverse gamma distribution and LN represents log normal
distribution. The mixed proportion coefficient π are from Dirichlet distribution:

(π1, · · · , πK) ∼ Dir(1, · · · , 1) (6)

3 Model Selection Prediction with Reversible Jump
Markov Chains Monte Carlo

Model selection is an important and difficulty problem on the mixture model.
Moreover, the valley among the neibourhood modes cannot be detected with
a general parameter estimation method. Thus, we utilize the Reversible Jump
MCMC model to overcome this difficulty.

In fact, our algorithm contains five types of parameter moves:

(a) π = (π1, · · · , πK);
(b) θ = (θ1, · · · , θK), where θk = (vk, wk, σ

2
k);

(c) z = (z1, · · · , zM );
(d) split and merge move;
(e) Metropolis-Hastings update.

Actually, the first three belong to the moves with the component number fixed
and step (d) is the move with the component number varied, step (e) is also the
move with the component number fixed.

3.1 The Moves with the Component Number Fixed for (a)(b)(c)

For the moves with the component bunber fixed, gibbs sampling and hybrid
MCMC (one kind of Metropolis-Hastings) are adopt. For π and z, Gibbs sam-
pling are used as follows:

– sample zm from its posterior p(zm = k|X,Y,θ,π) ∝ πkp(ym|θk,xm), m =
1, · · · ,M, k = 1, · · · ,K

– sample π from the conditional distribution:(π1, · · · , πK)|z ∼ Dir(1+n1, · · · , 1+
nK)

Here, nk =
∑M

m=1 Izm=k. In addition, θ are sampled by hybrid MCMC from its
posterior:

p(θ|D, z) ∝
K∏

k=1

p(θk|Dm, z) (7)
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3.2 The Moves with the Component Number Changed

For the moves with the component number changed, we use the same rules given
in [5] but extend the univariables to the multivariables x = (x1, · · · , xD), then
the off diagnoal entry becomes:

πk

(
vk exp

(
−
∑D

d=1 wk,d(xi,d − xj,d)2

2

))
= πk1

(
vk1 exp

(
−
∑D

d=1 wk1,d(xi,d − xj,d)2

2

))

+ πk2

(
vk2 exp

(
−
∑D

d=1 wk2,d(xi,d − xj,d)2

2

))
(8)

Since each dimension xd are independent, we can make the analysis for each
variable separately and obtain the new detailed balanced framework:

πk = πk1 + πk2 (9a)

πkσ
2
k = πk1

σ2
k1

+ πk2
σ2
k2

(9b)

πkvk = πk1
vk1

+ πk2
vk2

(9c)

πkvkwkd
= πk1

vk1
wk1,d + πk2

vk2
wk2,d, d = 1, · · · , D (9d)

The merge moves are based on the above equations 9, and the split moves are
follows: in order to match the dimension before and after split, (d+3)-dimension
random variable u = (u1, u2, u3, u4,1, · · · , u4,D) need to be generated each are
generated from Beta(2, 2). Then combining the detailed balanced equation 9,
split formula is given as follows:

πk1
= u1πk∗ , πk2

= (1− u1)πk∗ , u1 ∈ (0, 1) (10a)

σ2
k1

= u2σ
2
k∗
πk∗

πk1

, σ2
k2

= (1− u2)σ2
k∗
πk∗

πk2

, u2 ∈ (0, 1) (10b)

vk1
= u3vk∗

πk∗

πk1

, vk2
= (1− u3)vk

∗

0

πk∗

πk2

, u3 ∈ (0, 1) (10c)

wk1,d =
1− u4,d
u3

wk, wk2 =
u4,d

1− u3
wk, u4,d ∈ (0, 1), d = 1, · · · , D (10d)

In fact, parameters varies under split and merge moves which forms a birth-
and-death Markov chain. The birth and death probability for this Markov chain
is set to be: d1 = bkmax = 0, dkmax = b1 = 1, dk = bk = 0.5,∀k = 2, · · · , kmax−1.
Moreover, it is simulated by Metropolis-Hastings algirithm which is one kind
of Markov chain Monte Carlo simulation methods and is called as Reversible
Jump Markov chain Monte Carlo simulation in [3]. Therefore, the acceptance
probability need to be calculated:

A =

M∏
m=1

l(Ym|θk+1)

l(Y|θk)
× dk+1

bk
× p(θk+1)

p(θk)
× 1

Beta(u|θk+1, θk)
×
∣∣∣∣ ∂θk+1

∂(θk,u)

∣∣∣∣ (11)

here, k, k1, k2 are randomly chosen from {1, · · · , kmax}.
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3.3 Metropolis-Hastings Update

For the Metropolis-Hastings update, we adopt a penalized likelihood [4] as fol-
lows:

logLp(θ, p|D, k) = logL(θ, p|D, k)− P (12)

where the penalization P is BIC penalization:

PBIC =
ξ

2
log(N) (13)

here ξ denote the number of model parameters (4 ∗ k) and N is the number of
curve multiples the number of points on each curve. The acceptance probability
of this Metropolis-Hastings is:

min{1, L
p(θnew|D)

Lp(θold|D)
} (14)

4 Convergence Diagnosing

In this subsection, we generate 9 curves as the dataset, which are trajectories of
three Gaussian processes GP (µi, θi), i = 1, 2, 3, respectively. The mean functions
are given by

µ1(x1, x2) = f1(x1) + f2(x2),

µ2(x1, x2) = f2(x1) + f3(x2),

µ3(x1, x2) = f3(x1) + f1(x2).

(15)

where

f1(x) = exp(x/5)− 1.5

f2(x) = sin(x/4 ∗ π)

f3(x) = − sin(x/4 ∗ π)

(16)

and covariance parameters θi are given in Tab. 1. The convariants are :x1 =

Table 1. The covariance parameters for the simulated data.

w1 w2 v σ2

θ1 1 0.2 0.2 0.0025
θ2 0.5 0.5 1 0.001
θ3 10 1.0 0.2 0.0005

−4 : 0.08 : 4 and x2 = 0 : 0.08 : 8. Since the number of points in x1 and x2 are
the same, there is a one-to-one map between x1 and x2 in our experiment. In
Fig. 1, we plot the simulated curves. The x-axis is x1 and y-axis is y. Each 3
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Fig. 1. The simulated dataset. The x-axis is x1 and y-axis is y. Each 3 curves in one
panel are trajectories of the same Gaussian process with common parameters of mean
functions and covariance.
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Fig. 2. The trace of log likelihood for 1000 iterations

curves in one panel are trajectories of the same Gaussian process with common
parameters of mean functions and covariance.

Fig. 2 illustrates the trace of log likelihood for 1000 iterations of Markov
chain Monte carlo simulation. It became stable after 400 iterations. In Fig. 3,
we plot the trace of K for 1000 iterations and in Fig. 4 we plot the histogram of
K for 1000 iterations. It can be seen that K becomes stable after 400 and stays
on 3, which is compatible with our setting.

5 Conclusion

We have improved the RJMCM method for model selection prediction of MGPs
on two aspects: first, we extend the split and merge formula for dealing with
multi-input regression, which can be used to more complex and interesting data;
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Fig. 3. The trace of K for 1000 itera-
tions
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Fig. 4. The histogram of K for 1000 it-
erations

second, a Metropolis-Hasting update rule is added after the process of the moves,
which can remarkably accelerate the convergence. The experimental results on
simulated dataset demonstrate that the improved RJMCMC method is feasible
and effective.
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