Skip to main content

Genomic Data Management in Big Data Environments: The Colorectal Cancer Case

  • Conference paper
  • First Online:
Advances in Conceptual Modeling (ER 2018)

Abstract

If there is a domain where data management becomes an intensive Big Data issue, it is the genomic domain, due to the fact that the data generated day after day are exponentially increasing. A genomic data management strategy requires the use of a systematic method, intended to assure that the right data are identified, using the adequate data sources, and linking the selected information with a software platform based on conceptual models, which allows guaranteeing the implementation of genomic services with quality, efficient and valuable data. In this paper, we select the method called “SILE” –for Search, Identification, Load and Exploitation-, and we focus on validating its accuracy in the context of a concrete disease, the Colorectal Cancer. The main contribution of our work is to show how such methodological approach can be applied successfully in a real and complex clinical context, providing a working environment where Genomic Big Data are efficiently managed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Research Center on Software Production Methods (PROS), http://www.pros.webs.upv.es/.

  2. 2.

    Variation: Naturally occurring genetic differences among organisms in the same species [Scitable by Nature Education].

  3. 3.

    HGVS Nomenclature: http://varnomen.hgvs.org/.

  4. 4.

    Colorectal Cancer Atlas: http://colonatlas.org/index.html.

  5. 5.

    The National Center of Biotechnology Information: https://www.ncbi.nlm.nih.gov/.

  6. 6.

    Prognosis is defined as the likely course of a medical condition.

  7. 7.

    CCGVD, http://chromium.lovd.nl/LOVD2/colon_cancer/home.php.

References

  1. van Dijk, E.L., Auger, H., Jaszczyszyn, Y., Thermes, C.: Ten years of next-generation sequencing technology, Trends Genet. 30(9), 418–426 (2014). https://doi.org/10.1016/j.tig.2014.07.001

    Article  Google Scholar 

  2. Auffray, C., et al.: Making sense of big data in health research: towards an EU action plan. Genome Med. 8, 71 (2016). https://doi.org/10.1186/s13073-016-0323-y

    Article  Google Scholar 

  3. Wylie, B., Psaty, B.M.: Personalized medicine in the era of genomics. Jama 298(14), pp. 1682–1684 (2007). https://doi.org/10.1001/jama.298.14.1682

    Article  Google Scholar 

  4. Rigden, D.J., Fernández, M.X.: The 2018 Nucleic Acids Research database issue and the online molecular biology database collection. Nucleic Acids Res. 46(D1), D1–D7 (2017). https://doi.org/10.1093/nar/gkx1235

    Article  Google Scholar 

  5. Reyes Román, José F., Iñiguez-Jarrín, Carlos, Pastor, Óscar: Genomic Tools*: web-applications based on conceptual models for the genomic diagnosis. In: Damiani, Ernesto, Spanoudakis, George, Maciaszek, Leszek (eds.) ENASE 2017. CCIS, vol. 866, pp. 48–69. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94135-6_3

    Chapter  Google Scholar 

  6. Reyes Román, J.F.: Diseño y Desarrollo de un Sistema de Información Genómica basado en un Modelo Conceptual Holístico del Genoma Humano. Universitat Politècnica de València (2018). https://doi.org/10.4995/Thesis/10251/99565

    Article  Google Scholar 

  7. Reyes Román, J.F., Pastor, Ó., Casamayor, J.C., Valverde, F.: Applying conceptual modeling to better understand the human genome. In: Comyn-Wattiau, I., Tanaka, K., Song, l-Y., Yamamoto, S., Saeki, M. (eds.) ER 2016. LNCS, vol. 9974, pp. 404–412. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46397-1_31

    Chapter  Google Scholar 

  8. López, Ó.P., Palacio, A.L., Román, J.F.R., Casamayor, J.C.: Modeling life: a conceptual schema-centric approach to understand the genome. In: Cabot, J., Gómez, C., Pastor, O., Sancho, M., Teniente, E. (eds.) Conceptual Modeling Perspectives. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67271-7_3

    Chapter  Google Scholar 

  9. Reyes Román, J.F., Iñiguez-Jarrín, C., Pastor López, O.: GenesLove.Me: a model-based-web-Application for direct-To-consumer genetic tests, In: ENASE 2017 - Proceedings of the 12th International Conference on Evaluation of Novel Approaches to Software Engineering, pp. 133–143 (2017). https://doi.org/10.5220/0006340201330143

  10. Piñero, J., et al.: DisGeNET: a comprehensive platform integrating information on human disease-associated genes and variants, Nucleic acids research, gkw943 (2016). https://doi.org/10.1093/nar/gkw943

    Article  Google Scholar 

  11. Landrum, M.J., et al.: ClinVar: improving access to variant interpretations and supporting evidence. Nucleic Acids Res. 46(D1), D1062–D1067 (2017). https://doi.org/10.1093/nar/gkx1153

    Article  Google Scholar 

  12. Zerbino, D.R., et al.: Ensembl 2018. Nucleic Acids Res. 46(D1), D754–D761 (2017). https://doi.org/10.1093/nar/gkx1098

    Article  Google Scholar 

  13. Ramos, E.M., et al.: Phenotype–Genotype Integrator (PheGenI): synthesizing genome-wide association study (GWAS) data with existing genomic resources. Eur. J. Hum. Genet. 22(1), 144 (2014). https://doi.org/10.1038/ejhg.2013.96

    Article  Google Scholar 

  14. Sherry S. T., Ward M-H, Kholodov M., et al.: dbSNP: the NCBI database of genetic variation. Nucleic Acids Res. 29(1), 308–311 (2001)

    Article  Google Scholar 

  15. Richards, S., et al.: Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 17, 405–424 (2015). https://doi.org/10.1038/gim.2015.30

    Article  Google Scholar 

Download references

Acknowledgement

The authors would like to thank members of the PROS Research Centre Genome group for the fruitful discussions regarding the application of CM in the medicine field. This work has been supported by the Spanish Ministry of Science and Innovation through project DataME (ref: TIN2016-80811-P) and the Research and Development Aid Program (PAID-01-16) of the Universitat Politècnica de València under the FPI grant 2137.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana León Palacio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

León Palacio, A., García Giménez, A., Casamayor Ródenas, J.C., Reyes Román, J.F. (2018). Genomic Data Management in Big Data Environments: The Colorectal Cancer Case. In: Woo, C., Lu, J., Li, Z., Ling, T., Li, G., Lee, M. (eds) Advances in Conceptual Modeling. ER 2018. Lecture Notes in Computer Science(), vol 11158. Springer, Cham. https://doi.org/10.1007/978-3-030-01391-2_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-01391-2_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-01390-5

  • Online ISBN: 978-3-030-01391-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics