Skip to main content

Compression-Based Clustering of Video Human Activity Using an ASCII Encoding

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2018 (ICANN 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11140))

Included in the following conference series:

  • 2772 Accesses

Abstract

Human Activity Recognition (HAR) from videos is an important area of computer vision research with several applications. There are a wide number of methods to classify video human activities, not without certain disadvantages such as computational cost, dataset specificity or low resistance to noise, among others. In this paper, we propose the use of the Normalized Compression Distance (NCD), as a complementary approach to identify video-based HAR. We have developed a novel ASCII video data format, as a suitable format to apply the NCD in video. For our experiments, we have used the Activities of Daily Living Dataset, to discriminate several human activities performed by different subjects. The experimental results presented in this paper show that the NCD can be used as an alternative to classical analysis of video HAR.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akkaladevi, S.C., Heindl, C.: Action recognition for human robot interaction in industrial applications. In: 2015 IEEE International Conference on Computer Graphics, Vision and Information Security (CGVIS), pp. 94–99, November 2015

    Google Scholar 

  2. Avgerinakis, K., Briassouli, A., Kompatsiaris, I.: Recognition of activities of daily living for smart home environments. In: 2013 9th International Conference on Intelligent Environments, pp. 173–180, July 2013

    Google Scholar 

  3. Beauchemin, S.S., Barron, J.L.: The computation of optical flow. ACM Comput. Surv. 27(3), 433–466 (1995)

    Article  Google Scholar 

  4. Bux, A., Angelov, P., Habib, Z.: Vision based human activity recognition: a review. In: Angelov, P., Gegov, A., Jayne, C., Shen, Q. (eds.) Advances in Computational Intelligence Systems. AISC, vol. 513, pp. 341–371. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-46562-3_23

    Chapter  Google Scholar 

  5. Cerra, D., Datcu, M.: Expanding the algorithmic information theory frame for applications to earth observation. Entropy 15(1), 407–415 (2013)

    Article  MathSciNet  Google Scholar 

  6. Chaaraoui, A.A., Climent-Pérez, P., Flórez-Revuelta, F.: A review on vision techniques applied to Human Behaviour Analysis for Ambient-Assisted Living. Expert. Syst. Appl. 39(12), 10873–10888 (2012)

    Article  Google Scholar 

  7. Chen, T.C., Dick, S., Miller, J.: Detecting visually similar web pages: application to phishing detection. ACM Trans. Internet Technol. 10(2), 5:1–5:38 (2010)

    Article  Google Scholar 

  8. Cilibrasi, R., Vitanyi, P.M.B.: Clustering by compression. IEEE Trans. Inf. Theory 51(4), 1523–1545 (2005)

    Article  MathSciNet  Google Scholar 

  9. Cilibrasi, R., Cruz, A.L., de Rooij, S., Keijzer, M.: CompLearn Home. CompLearn Toolkit. http://www.complearn.org/

  10. Cohen, A.R.: Extracting meaning from biological imaging data. Mol. Biol. Cell 25(22), 3470–3473 (2014)

    Article  Google Scholar 

  11. Cohen, A., Bjornsson, C., Temple, S., Banker, G., Roysam, B.: Automatic summarization of changes in biological image sequences using algorithmic information theory. IEEE Trans. Pattern Anal. Mach. Intell. 31(8), 1386–1403 (2009)

    Article  Google Scholar 

  12. González-Pardo, A., Granados, A., Camacho, D., de Borja Rodríguez, F.: Influence of music representation on compression-based clustering. In: IEEE World Congress on Evolutionary Computation, pp. 2988–2995 (2010)

    Google Scholar 

  13. Granados, A., Cebrian, M., Camacho, D., de Borja Rodriguez, F.: Reducing the loss of information through annealing text distortion. IEEE Trans. Knowl. Data Eng. 23(7), 1090–1102 (2011)

    Article  Google Scholar 

  14. Granados, A., Koroutchev, K., de Borja Rodríguez, F.: Discovering data set nature through algorithmic clustering based on string compression. IEEE Trans. Knowl. Data Eng. 27(3), 699–711 (2015)

    Article  Google Scholar 

  15. Gueguen, L., Datcu, M.: A similarity metric for retrieval of compressed objects: application for mining satellite image time series. IEEE Trans. Knowl. Data Eng. 20(4), 562–575 (2008)

    Article  Google Scholar 

  16. Guha, T., Ward, R.K.: Image similarity using sparse representation and compression distance. IEEE Trans. Multimed. 16(4), 980–987 (2014)

    Article  Google Scholar 

  17. Khan, Z.A., Sohn, W.: Abnormal human activity recognition system based on R-transform and kernel discriminant technique for elderly home care. IEEE Trans. Consum. Electron. 57(4), 1843–1850 (2011)

    Article  Google Scholar 

  18. Lavesson, N., Axelsson, S.: Similarity assessment for removal of noisy end user license agreements. Knowl. Inf. Syst. 32(1), 167–189 (2012)

    Article  Google Scholar 

  19. Li, M., Chen, X., Li, X., Ma, B., Vitanyi, P.: The similarity metric. IEEE Trans. Inf. Theory 50(12), 3250–3264 (2004)

    Article  MathSciNet  Google Scholar 

  20. Liu, M., Chen, C., Liu, H.: Time-ordered spatial-temporal interest points for human action classification. In: 2017 IEEE International Conference on Multimedia and Expo (ICME), pp. 655–660, July 2017

    Google Scholar 

  21. Maddalena, L., Petrosino, A.: A self-organizing approach to background subtraction for visual surveillance applications. IEEE Trans. Image Process. 17(7), 1168–1177 (2008)

    Article  MathSciNet  Google Scholar 

  22. Messing, R., Pal, C., Kautz, H.: Activity recognition using the velocity histories of tracked keypoints. In: 2009 IEEE 12th International Conference on Computer Vision, pp. 104–111, September 2009

    Google Scholar 

  23. Qiao, L., Nahrstedt, K.: Comparison of MPEG encryption algorithms. Comput. Graph. 22(4), 437–448 (1998)

    Article  Google Scholar 

  24. Roitberg, A., Perzylo, A., Somani, N., Giuliani, M., Rickert, M., Knoll, A.: Human activity recognition in the context of industrial human-robot interaction. In: 2014 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA), pp. 1–10, December 2014

    Google Scholar 

  25. Sarasa, G., Granados, A., Rodriguez, F.B.: An approach of algorithmic clustering based on string compression to identify bird songs species in xeno-canto database. In: 2017 3rd International Conference on Frontiers of Signal Processing (ICFSP), pp. 101–104, September 2017

    Google Scholar 

  26. Wang, X.: Intelligent multi-camera video surveillance: a review. Pattern Recognit. Lett. 34(1), 3–19 (2013)

    Article  Google Scholar 

  27. Wu, S., Oreifej, O., Shah, M.: Action recognition in videos acquired by a moving camera using motion decomposition of Lagrangian particle trajectories. In: 2011 International Conference on Computer Vision, pp. 1419–1426, November 2011

    Google Scholar 

  28. Yan, Y., Ricci, E., Liu, G., Sebe, N.: Egocentric daily activity recognition via multitask clustering. IEEE Trans. Image Process. 24(10), 2984–2995 (2015)

    Article  MathSciNet  Google Scholar 

  29. Yu, T., Wang, Z., Yuan, J.: Compressive quantization for fast object instance search in videos. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 726–735, October 2017

    Google Scholar 

  30. Zhang, G., Chanson, H.: Application of local optical flow methods to high-velocity free-surface flows: validation and application to stepped chutes. Exp. Therm. Fluid Sci. 90, 186–199 (2018)

    Article  Google Scholar 

  31. Zhang, S., Wei, Z., Nie, J., Huang, L., Wang, S., Li, Z.: A review on human activity recognition using vision-based method. J. Healthc. Eng. 2017 (2017)

    Google Scholar 

Download references

Acknowledgment

This work was funded by Spanish project of MINECO/FEDER TIN2014-54580-R and TIN2017-84452-R, (http://www.mineco.gob.es/).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillermo Sarasa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sarasa, G., Montero, A., Granados, A., Rodriguez, F.B. (2018). Compression-Based Clustering of Video Human Activity Using an ASCII Encoding. In: Kůrková, V., Manolopoulos, Y., Hammer, B., Iliadis, L., Maglogiannis, I. (eds) Artificial Neural Networks and Machine Learning – ICANN 2018. ICANN 2018. Lecture Notes in Computer Science(), vol 11140. Springer, Cham. https://doi.org/10.1007/978-3-030-01421-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-01421-6_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-01420-9

  • Online ISBN: 978-3-030-01421-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics