Skip to main content

Neural Networks with Block Diagonal Inner Product Layers

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2018 (ICANN 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11141))

Included in the following conference series:

  • 8539 Accesses

Abstract

We consider a modified version of the fully connected layer we call a block diagonal inner product layer. These modified layers have weight matrices that are block diagonal, turning a single fully connected layer into a set of densely connected neuron groups. This idea is a natural extension of group, or depthwise separable, convolutional layers applied to the fully connected layers. Block diagonal inner product layers can be achieved by either initializing a purely block diagonal weight matrix or by iteratively pruning off diagonal block entries. This method condenses network storage and speeds up the run time without significant adverse effect on the testing accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    When using block diagonal layers, one should alter the output format of the previous layer and the expected input format of the following layer accordingly, in particular to row major ordering.

References

  1. Boahen, K.: Neurogrid: a mixed-analog-digital multichip system for large-scale neural simulations. Proc. IEEE 102(5), 699–716 (2014)

    Article  Google Scholar 

  2. Chollet, F.: Xception: deep learning with depthwise separable convolutions. arXiv:1610.02357 (2017)

  3. Han, S., et al.: Deep compression: compressing deep neural networks with pruning, trained quantization and Huffman coding. In: ICLR (2015)

    Google Scholar 

  4. Han, S., et al.: Learning both weights and connections for efficient neural networks. In: NIPS, pp. 1135–1143 (2015)

    Google Scholar 

  5. He, T., et al.: Reshaping deep neural network for fast decoding by node-pruning. In: IEEE ICASSP, pp. 245–249 (2014)

    Google Scholar 

  6. Herculano-Houzel, S.: The remarkable, yet not extraordinary, human brain as a scaled-up primate brain and its associated cost. PNAS 109(Supplement 1), 10661–10668 (2012)

    Article  Google Scholar 

  7. Hinton, G., et al.: Distilling the knowledge in a neural network. In: NIPS (2014)

    Google Scholar 

  8. Ioannou, Y., et al.: Deep Roots: improving CNN efficiency with hierarchical filter groups. In: CVPR (2017)

    Google Scholar 

  9. Jhurani, C., et al.: A GEMM interface and implementation on NVIDIA GPUs for multiple small matrices. J. Parallel Distrib. Comput. 75, 133–140 (2015)

    Article  Google Scholar 

  10. Krizhevsky, A.: Learning multiple layers of features from tiny images. Technical report, Computer Science, University of Toronto (2009)

    Google Scholar 

  11. Krizhevsky, A.: Cuda-convnet. Technical report, Computer Science, University of Toronto (2012)

    Google Scholar 

  12. Krizhevsky, A.: Cuda-convnet: high-performance C++/CUDA implementation of convolutional neural networks (2012)

    Google Scholar 

  13. Krizhevsky, A., et al.: Imagenet classification with deep convolutional neural networks. In: NIPS, pp. 1106–1114 (2012)

    Google Scholar 

  14. Lebedev, V., et al.: Fast convnets using group-wise brain damage. In: CVPR (2016)

    Google Scholar 

  15. LeCun, Y., et al.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  16. LeCun, Y., et al.: The MNIST database of handwritten digits. Technical report

    Google Scholar 

  17. Masliah, I., et al.: High-performance matrix-matrix multiplications of very small matrices. In: Dutot, P.-F., Trystram, D. (eds.) Euro-Par 2016. LNCS, vol. 9833, pp. 659–671. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-43659-3_48

    Chapter  Google Scholar 

  18. Merolla, P.A., et al.: A million spiking-neuron integrated circuit with a scalable communication network and interface. Science 345(6197), 668–673 (2014)

    Article  Google Scholar 

  19. Netzer, Y., et al.: Reading digits in natural images with unsupervised feature learning. In: NIPS (2011)

    Google Scholar 

  20. Nickolls, J., et al.: Scalable parallel programming with CUDA. ACM Queue 6(2), 40–53 (2008)

    Article  Google Scholar 

  21. Reed, R.: Pruning algorithms-a survey. IEEE Trans. Neural Netw. 4(5), 740–747 (1993)

    Article  Google Scholar 

  22. Sainath, T.N., et al.: Low-rank matrix factorization for deep neural network training with high-dimensional output targets. In: IEEE ICASSP (2013)

    Google Scholar 

  23. Simonyan, K., et al.: Very deep convolutional networks for large-scale image recognition. arXiv:1409.1556 (2014)

  24. Sindhwani, V., et al.: Structured transforms for small-footprint deep learning. In: NIPS, pp. 3088–3096 (2015)

    Google Scholar 

  25. Srinivas, S., et al.: Data-free parameter pruning for deep neural networks. arXiv:1507.06149 (2015)

  26. Wen, W., et al.: Learning structured sparsity in deep neural networks. In: NIPS, pp. 2074–2082 (2016)

    Google Scholar 

  27. Yuan, M., et al.: Model selection and estimation in regression with grouped variables. J. Royal Stat. Soc. Ser. B 68(1), 49–67 (2006)

    Article  MathSciNet  Google Scholar 

  28. Zeiler, M.D., et al.: Visualizing and understanding convolutional networks. arXiv:1311.2901 (2013)

  29. Zhang, X., et al.: ShuffleNet: an extremely efficient convolutional neural network for mobile devices. arXiv:1707.01083 (2017)

Download references

Acknowledgments

This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1256260. This work used the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation grant number OCI-1053575. Specifically, it used the Bridges system, which is supported by NSF award number ACI-1445606, at the Pittsburgh Supercomputing Center (PSC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amy Nesky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nesky, A., Stout, Q.F. (2018). Neural Networks with Block Diagonal Inner Product Layers. In: Kůrková, V., Manolopoulos, Y., Hammer, B., Iliadis, L., Maglogiannis, I. (eds) Artificial Neural Networks and Machine Learning – ICANN 2018. ICANN 2018. Lecture Notes in Computer Science(), vol 11141. Springer, Cham. https://doi.org/10.1007/978-3-030-01424-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-01424-7_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-01423-0

  • Online ISBN: 978-3-030-01424-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics