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Abstract. The correct ventilation for patients in intensive care units
plays a critical role for the prognostic and the recovery during the stay
in the hospital. Desynchronization between the ventilator and the patient
is an important source of stress, emphasized by the lack of commu-
nication due to intubation or loss of consciousness. This contribution
proposes a novel approach based on electroencephalographic (EEG)
activity to detect breathing effort. Relying both on recent neuroscience
finding on respiratory-related evoked potential and on latest development
of information geometry, the proposed approach elaborates on Rieman-
nian distances between EEG covariance matrices to differentiate among
different respiratory loads. The results demonstrate that this approach
outperform existing state-of-the-art methods quantitatively, in terms of
mean accuracy, and qualitatively, being able to predict level of breathing
discomfort.
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1 Introduction

Brain-machine interfaces (BMI) allow to interact with a physical system using
only cerebral activity and are mostly of interest in situations where muscle activ-
ity is not reliable or possible [24]. BMI also offer an opportunity for situations
where communication is difficult: it is still possible to measure a brain response
to specific stimulus or situation for unconscious patients [19]. Endotracheal ven-
tilation (“intubation”) is a commonly used intervention in the ICU [8] that
impairs verbal communication. In this context a reliable objective assessment of
ventilators performance is of particular importance both for patient’s quality of
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stay and clinical outcome. In the case of patient-ventilator asynchrony [6], the
ventilator could interfere or impede the autonomous breathing function, which is
an automatic and unconscious process, inducing dyspnea. The dyspnea, that is
the sensation of shortness of breath, could be the cause of stressful experiences,
with psychological or physical consequences [21].

To avoid these situations of asynchrony between a patient and the mechani-
cal ventilation, they should be detected as soon as possible. Common approaches
are relying on measurements of physiological signals, such as pressure, flow or
blood oxygen saturation, and biosignals, such as electromyography. Several algo-
rithms have been proposed to automatically detect these asynchrony, but they
are restricted to certain types of disharmony [2,18]. The cortical networks for
breathing control generate an activity observable on EEG [7] and the discom-
fort level have been reported to be correlated with this neural activity [13]. Two
different kinds of neural activity are reported in the literature: preinspiratory
potentials that are event-related desynchronization [7,10] and respiratory-related
evoked potential which are event-related potential [13].

The detection and classification of these neural activity have been widely
explored in the brain-machine interface community. The event-related desyn-
chronization has been studied in the context of motor imagery-based paradigm
and the event-related potentials are usually employed with oddball paradigm
that elicits a P300 potential. Unfortunately, these signals are difficult to detect
because of the poor signal-to-noise ratio and the variability of EEG signal from
one subject to another. The most common approach is to design a patient-specific
spatial filters to enhance the signal of interest and it is often associated with a
reduction of dimensionality of the input. Unfortunately, these highly parametric
approaches suffer from various levels of overfitting and underperform on new
data [15]. Recent advances and a complete review could be found in [14].

Methods based on Riemannian geometry allows to revisit covariance-based
algorithms by considering the spatial covariance matrices in an adequate space.
Covariance matrices are symmetric and positive definite, they are elements of
manifold with a negative curvature. Euclidean distance is not adequate on these
manifolds; specific distances and divergences should be considered [12]. Rieman-
nian methods achieve state-of-the-art results on multiple BCI paradigm, in depth
reviews are provided in [4,25]. The study of [10,17] is the first attempt to use
Riemannian geometry for the detection of respiratory states, based on preinspi-
ratory potentials. The authors classify two situations, resting unloaded breathing
and inspiratory threshold loading, with a variant of the Minimum Distance to
Mean inspired by the k-mean algorithm.

The contributions described in this paper are the following:

– this is the first attempt to use Riemannian geometry on respiratory-related
evoked potentials (RREP) instead of preinspiratory potentials (PIP),

– classification is done in the tangent space, whereas existing approach use a
variation of a Riemannian k-mean,

– the experimental results goes beyond the binary classification (resting vs res-
piratory load) to perform a multiclass detection of the respiratory load,
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– the obtained results outperform previously reported results, in a more chal-
lenging setup (multiclass instead of two classes).

The next section describes the existing approaches for detecting respiratory-
related evoked potentials and preinspiratory potentials, along the proposed Rie-
mannian framework. Section 3 provides the details concerning the experiment
and the dataset. The described approaches are compared in Sect. 3.2 and the
classification accuracy is estimated in different setups. These results are dis-
cussed in Sect. 4.

2 Methods

We will denote as X ∈ RC×N an EEG signal recorded with C electrodes during
N time steps. This EEG signal corresponds to a session containing multiple
trials.

2.1 Existing Approaches

When dealing with evoked potentials, XDAWN filters are a robust and widely
employed algorithm [20]. It tries to uncover a stimulus E ∈ RNt×C , where Nt

is number of time steps of the stimulus, by exploiting the temporal information
of the session with D ∈ RN×Nt , a Toeplitz matrix with 0 except for stimulus
timing. Starting from the model that the EEG isXT = DE+η, where η ∈ RC×N

is non-target signal, the objective of XDAWN is to find a suitable spatial filter
W ∈ RC×Nf that enhances the stimulus while reducing the non-target signal.
Nf is the number of selected filters. The goal is to find W that maximizes the
SSNR:

Ŵ = argmaxW
tr WT Σ̂1W

tr WT Σ̂XW
, (1)

with Σ̂1 = ÊTDTDÊ, X̂X = XXT and Ê = (DTD)−1DTXT .
Similarly, for motor imagery, the most common preprocessing technique is to

rely on Common Spatial Patterns (CSP) to filter the signal [3]. The EEG signal
X should be centered and scaled and it is customary to bandpass filter the signal
in the frequency of interest. After epoching the signal, two covariance matrices
Σ1 and Σ2 are estimated, that correspond to 2 conditions. CSP is obtained by
the simultaneous diagonalization of:

WTΣ1W = ∆1 and WTΣ2W = ∆2 , s.t. ∆1 + ∆2 = I (2)

The common practice is to select only a subset of spatial filters from W .
After this preprocessing, the data are usually well separated, thus a simple

classifier such as Fisher Linear Discriminant Analysis is sufficient to achieve very
high classification results. In this work, we also consider an SVM classifier using
either linear or RBF kernel, chosing the hyperparameters via cross-validation. To
ensure the reproducibility of the results and facilitate the comparison with [17],
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we also consider the One-Class SVM [23] in our experiment. One should note
that a direct comparison with [17] is not possible, their study is restricted to a
two-class model and rely on AUC estimator whereas our study is multiclass and
evaluate models through their accuracy. Accuracy is a basic but correct estimator
in this context as the classes are balanced and the classifer are unbiaised [9].

2.2 Riemannian Geometry

Covariances matrices Σ are symmetric and positive-definite (SPD). Spatial
covariance matrices could directly be estimated from multivariate EEG sig-
nals and we rely on a more robust estimator that sample covariance estimation
Σ̂ = 1

NXXT , that is Schäfer-Strimmer estimator [11,22]. Covariance matri-
ces capture well changes of amplitude characteristic of event-related desynchro-
nization, but should be adapted to be suited to evoked potentials detection.
So-called extended covariance matrices [5] incorporate evoked potential temple
information, here we use XDAWN to build these extended covariance matrices.

The covariance matrices are estimated from the extended signal Xext =
[
ET

X

]
,

Xext ∈ R2C×Nt .
It is possible to choose a metric such that the inner product on the tangent

space TΣM of each point Σ varies smoothly from one point to another. In that
case, all the points “glued” together are considered as a differentiable manifold
M. For the set of SPD matrices, one could choose the following inner product

⟨Θ|Θ′⟩Σ = tr(Σ−1ΘΣ−1Θ′) ,

for Θ and Θ′ in TΣM. This inner product allows to compute the path between
any pair of points from M, this path is called a curve and the shortest path
between two points is a geodesic γ(t). The length of the geodesic curve between
Σ1 and Σ2 is the Riemannian distance δ:

δ(Σ1,Σ2 ) =
∥∥∥log(Σ− 1

2
1 Σ2Σ

− 1
2

1 )
∥∥∥
F

. (3)

It is known as the affine-invariant Riemannian metric [16].
Any point Θ of the tangent space TΣM could be mapped on M with

Σ′ = expΣ(Θ) = Σ
1
2 exp(Σ− 1

2 ΘΣ− 1
2 )Σ

1
2

and the reverse mapping, from M to TΣM is

Θ = logΣ(Σ′) = Σ
1
2 log(Σ− 1

2 Σ′Σ− 1
2 )Σ

1
2 .

The geodesic γ(t) on the manifold could then be defined as:

γ(t) = expΣ1
(t logΣ1

(Σ2 )) (4)
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Another important notion is the mean of Σi points, which is computed dif-
ferently in the context of Riemannian manifold. This is the point minimizing the
square of the distance between Σ̄ and a Σi.

Σ̄ = argminΣ

N∑

i=1

δ2 (Σi,Σ). (5)

In BMI, two approaches have been proposed for classification. The first one
is simply a classification in the tangent space located at the Riemannian mean
of the whole session [1]. The main interest of this approach is that all Euclidean
algorithm (LDA, SVM and others) could be directly applied in this tangent
space. It should be noted that elements of this space are symmetric matrices,
thus the dimension of the input is C(C + 1)/2 instead of C2 .

The other classifier is called Minimum Distance to Mean (MDM), introduced
in [1], is presented for multi-class classification in the manifold. The classification
is decided from the nearest class mean. One of the interest of this approach is
that all the computation are made on the manifold, no computation take place
on the tangent space.

3 Experiments

The study protocol was approved by the local Ethics committee (CPP): num-
ber 11073 on 2011-11-24, and is part of the trial registered in the public trials
registry, http://clinicaltrials.gov, number NCT01548586. All study participants
gave their informed, written consent.

Fig. 1. Evoked potentials found for the subject with the best and the worst classifica-
tion results, that is MIL and DOD subject. The RREP are filtered with XDAWN to
using 8 components.
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3.1 Setup and Dataset

The subject was seated comfortably and breathed into a mouthpiece connected
to a low-resistance non-rebreathing valve (2600 Medium, Hans Rudolph Inc.,
St Louis, MO). Respiratory flows were recorded using a pneumotacho-Graph
(Fleish no. 2, Lausanne, Switzerland) connected to a differential pressure trans-
ducer (TMSi 45 5cmH2O, Holland). Mouth pressure (MP) was measured using
a differential pressure transducer (Validyne MP 45 100 cmH2O) and end-tidal
pressure of CO2 (PETCO2) using a capnograph (Capnogard 1265, Novametrix,
Wallingford, CT). EEG signal was recording synchronously with the breath-
ing using a 19 electrodes Cap (EasyCap, Brain Products GmbH, Germany).
Active electrodes were placed in equidistant positions (ActiCap, Brain Products
GmbH, Germany) according to the conventional “10–20” topographic system.
The ground electrode was positioned at AFz. The EEG signal was digitized at
2000Hz and recorded using NeuroRT Studio (Mensiatech, Chantepie, France)
for subsequent processing.

After an adaptation period during which the subjects breathed quietly
through the unloaded circuit, the lowest and highest loads to be investigated
were applied during a few respiratory cycles to familiarize the subjects with the
load range and evaluation scale. The subjects were then exposed to five levels
of inspiratory pressure load conditions (PEEP valve for vital flow 100 set; Vital
Signs Inc., Gamida, France):

– Spontaneous breathing through the unloaded circuit (RS)
– Breathing with a resistive load of 10 cmH2O (R10),
– Breathing with a resistive load of 20 cmH2O (R20),
– Breathing with a resistive load of 30 cmH2O (R30).

Each load was applied for 5min respiratory cycles, after a 3min rest. To assess
that the different loads are generating RREP, Fig. 1 shows the average evoked
potentials obtained for each condition (RS, R10, R20 and R30) for two subjects,
those with the best and the worst classification results.

3.2 Results

Five methods are evaluated on this dataset: MDM and Tangent Space classifica-
tion, both introduced in Sect. 2.2, XDAWN+LDA as explained in Eq. (1), One-
Class SVM operating on vectorized covariance matrices (SVMeeg), as proposed
by [17] and a linear SVM (SVMphy) operating input vectors of 6 features from
the MP sensors (peak, average, total volume, flow variance, skewness and kur-
tosis) [17]. An extensive recursive feature selection process is set up for selecting
the best features among the 26 possibility for SVMphy classifier. All the meth-
ods are evaluated through 10-fold validation using accuracy, as the classes are
balanced and the classifer are unbiaised [9].

Figure 2 shows the obtained accuracy for all subjects in the multiclass case.
Classification in the tangent space offers the best results and outperform all other
methods for all subjects. The second method is the SVM based on physiological



668 S. Chevallier et al.

parameters which achieves honorable results. The XDAWN+LDA and the MDM
classifiers yield comparable results, the MDM displaying a larger variance. The
SVM classifying the covariance matrices is performing very poorly, confirming
that Euclidean approaches are not suited to deal correctly with curved manifold.

Fig. 2. Comparison of multiclass detection of RREP for each of the 14 subjects with
Riemannian approaches Minimum Distance to Mean (MDM) and Tangent Space (TS)
and state of the art approaches, that is XDAWN+LDA and SVM based on physiological
(SVMphy) or EEG inputs (SVMeeg).

Table 1. Accuracy values for binary classification, that is detection of normal breathing
vs respiratory load. The accuracies are compared for the proposed Riemannian app-
roach (Tangent Space on EEG) for both evoked potential (RREP) and pre-inspiratory
potential (PIP), and for state-of-the-art approach for physiological input (SVM on
pressure sensors).

Method Input Accuracy (%)

SVM physiological data RREP 71.76 ± 9.83%

Tangent space RREP 93.46 ± 10.04%

SVM physiological data PIP 85.17 ± 12.85%

Tangent space PIP 87.75 ± 12.72%

Figure 3 shows the average accuracy values for the multiclass case (dis-
criminating between RS, R10, R20 and R30) and the two-class case (RS vs
R10/R20/R30). The two-class case allows a comparison with the state-of-the-
art study of [17]: it could be seen that the results of all the methods are slightly
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degraded in the multiclass case. Table 1 summarizes the results of the two-class
case with RREP and compares with the two best methods for PIP. Tangent
space classification on RREP obtains the best results.

Fig. 3. Mean values for RREP classification for all subjects under 3 increasing respira-
tory loads and one control condition, for MDM, Tangent Space, XDAWN+LDA, SVM
based on physiological and EEG data.

4 Discussion and Conclusion

This paper presents a first step towards a closed-loop BMI ventilator. One cur-
rent limitation is that EEG is expensive, cumbersome, sensitive to various sources
of noise, and not suitable for long-term recordings. Nonetheless, these limitations
could be mitigated in a medical and controlled environment. For online process-
ing, the proposed method still needs a physiological channel to extract cues
for inspiration and expiration. This drawback is of limited importance as such
sensors are cheap and already available on existing ventilator devices.

The existing approaches are relying on physiological or behavioral informa-
tion, but lack precision to detect certain asynchronous state. A first attempt
to use EEG information together with Riemannian geometry yield promising
results, but the method proposed by the authors require to tune several param-
eters and is limited to a two-class case.
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The proposed method relies on respiration-related evoked potentials instead
of pre-inspiratory potentials and thanks to an appropriate Riemannian classifier
outperforms current state of the art. The results are more accurate and allow
to detect different respiratory loads, and thus open the possibility quantify the
breathing effort.
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