Skip to main content

Bayesian Vehicle Detection Using Optical Remote Sensing Images

  • Conference paper
  • First Online:
Advanced Concepts for Intelligent Vision Systems (ACIVS 2018)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11182))

  • 1213 Accesses

Abstract

Automatic object detection is a widely investigated problem in different fields such as military and urban surveillance. The availability of Very High Resolution (VHR) optical remotely sensed data, has motivated the design of new object detection methods that allow recognizing small objects like ships, buildings and vehicles. However, the challenge always remains in increasing the accuracy and speed of these object detection methods. This can be difficult due to the complex background. Therefore, the development of robust and flexible models that analyze remotely sensed data for vehicle detection is needed. We propose in this paper a hierarchical Bayesian model for automatic vehicle detection. Experiments performed using real data indicate the benefit that can be drawn from our approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.mathworks.com/help/vision/examples/object-detection-using-faster-r-cnn-deep-learning.html.

  2. 2.

    http://gdo-datasci.ucllnl.org/cowc/.

References

  1. Chen, Y.-L., et al.: Intelligent urban video surveillance system for automatic vehicle detection and tracking in clouds. In: 27th International Conference on (AINA), pp. 814–821. IEEE (2013)

    Google Scholar 

  2. Lemelson, J.-H., Pedersen, R.-D.: GPS vehicle collision avoidance warning and control system and method, November 9, US Patent 5,983,161 (1999)

    Google Scholar 

  3. Zhu, C., Zhou, H., Wang, R., Guo, J.: A novel hierarchical method of ship detection from spaceborne optical image based on shape and texture features. TGRS 48(9), 3446–3456 (2010)

    Google Scholar 

  4. Stankov, K., He, D.-C.: Detection of buildings in multispectral very high spatial resolution images using the percentage occupancy hit-or-miss transform. IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. 7(10), 4069–4080 (2014)

    Article  Google Scholar 

  5. Hu, Y., et al.: L Algorithm for vision-based vehicle detection and classification. In: IEEE International Conference on Robotics and Biomimetics (ROBIO), pp. 568–572. IEEE (2013)

    Google Scholar 

  6. Chen, X., Xiang, S., Liu, C.-L., Pan, C-H.: Vehicle detection in satellite images by parallel deep convolutional neural networks. In: Pattern Recognition (ACPR), pp. 181–185. IEEE (2013)

    Google Scholar 

  7. Qu, S., Wang, Y., Meng, G., Pan, C.: Vehicle Detection in Satellite images by incorporating objectness and convolutional neural network. J. Ind. Intell. Inf. 4(2) (2016)

    Google Scholar 

  8. Ram, T.-Z., Zhao, T., Nevatia, R.: Car detection in low resolution aerial images. In: Image and Vision Computing. Citeseer (2001)

    Google Scholar 

  9. Grabner, H., Nguyen, T.-T., Gruber, B., Bischof, H.: On-line boosting-based car detection from aerial images. ISPRS J. Photogramm. Remote. Sens. 63(3), 382–396 (2008)

    Article  Google Scholar 

  10. Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 971–987 (2002)

    Article  MATH  Google Scholar 

  11. Moranduzzo, T., Melgani, F.: Automatic car counting method for unmanned aerial vehicle images. TGRS 52(3), 1635–1647 (2014)

    Google Scholar 

  12. Zhong, P., Wang, R.: A multiple conditional random fields ensemble model for urban area detection in remote sensing optical images. TGRS 45(12), 3978–3988 (2007)

    Google Scholar 

  13. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 580–587 (2014)

    Google Scholar 

  14. Gkioxari, G., Girshick, R., Malik, J.: Contextual action recognition with R-CNN, in: Proceedings of the ICCV, pp. 1080–1088 (2015)

    Google Scholar 

  15. Ren, S., et al.: Faster R-CNN: Towards real-time object detection with region proposal networks. In: Advances in NIPS, pp. 91–99 (2015)

    Google Scholar 

  16. Zitnick, C.L., Dollár, P.: Edge boxes: locating object proposals from edges. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 391–405. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_26

    Chapter  Google Scholar 

  17. Uijlings, J.: Selective search for object recognition. Int. J. Comput. Vis. 104(2), 154–171 (2013)

    Article  Google Scholar 

  18. Robert, C., Castella, G.: Monte Carlo Statistical Methods. Springer, New York (2004). https://doi.org/10.1007/978-1-4757-4145-2

    Book  Google Scholar 

  19. Huerta, G.: Multivariate bayes wavelet shrinkage and applications. J. Appl. Stat. 32(5), 529–542 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  20. Tiao, G.-C., Tan, W.Y.: Bayesian analysis of random-effect models in the analysis of variance. I. Posterior distribution of variance-components. Biometrika 52(1/2), 37–53 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  21. Robert, C.-P.: Monte carlo methods, Wiley Online Library (2004)

    Google Scholar 

  22. Dobigeon, N., Hero, A.-O., Tourneret, J.-Y.: Hierarchical bayesian sparse image reconstruction with application to MRFM. IEEE Trans. Image Process. 18(9), 2059–2070 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Tourneret, J.-Y., Chaari, L., Batatia, H.: Sparse bayesian regularization using bernoulli-laplacian priors. In: (EUSIPCO), Marrkech, Morocco, September, 9–13 (2013)

    Google Scholar 

  24. Shen, W., Wang, X., Wang, Y., Bai, X., Zhang, Z.: Deepcontour: A deep convolutional feature learned by positive-sharing loss for contour detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3982–3991 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walma Gharbi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gharbi, W., Chaari, L., Benazza-Benyahia, A. (2018). Bayesian Vehicle Detection Using Optical Remote Sensing Images. In: Blanc-Talon, J., Helbert, D., Philips, W., Popescu, D., Scheunders, P. (eds) Advanced Concepts for Intelligent Vision Systems. ACIVS 2018. Lecture Notes in Computer Science(), vol 11182. Springer, Cham. https://doi.org/10.1007/978-3-030-01449-0_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-01449-0_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-01448-3

  • Online ISBN: 978-3-030-01449-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics