Skip to main content

Recursive Chaining of Reversible Image-to-Image Translators for Face Aging

  • Conference paper
  • First Online:
Advanced Concepts for Intelligent Vision Systems (ACIVS 2018)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11182))

Abstract

This paper addresses the modeling and simulation of progressive changes over time, such as human face aging. By treating the age phases as a sequence of image domains, we construct a chain of transformers that map images from one age domain to the next. Leveraging recent adversarial image translation methods, our approach requires no training samples of the same individual at different ages. Here, the model must be flexible enough to translate a child face to a young adult, and all the way through the adulthood to old age. We find that some transformers in the chain can be recursively applied on their own output to cover multiple phases, compressing the chain. The structure of the chain also unearths information about the underlying physical process. We demonstrate the performance of our method with precise and intuitive metrics, and visually match with the face aging state-of-the-art.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cross-age reference coding for age-invariant face recognition and retrieval. http://bcsiriuschen.github.io/CARC/. Accessed 18 May 2018

  2. Antipov, G., Baccouche, M., Berrani, S., Dugelay, J.: Apparent age estimation from face images combining general and children-specialized deep learning models. In: CVPR Workshops (2016)

    Google Scholar 

  3. Antipov, G., Baccouche, M., Dugelay, J.L.: Face aging with conditional generative adversarial networks. In: ICIP (2017)

    Google Scholar 

  4. Chen, B.-C., Chen, C.-S., Hsu, W.H.: Cross-age reference coding for age-invariant face recognition and retrieval. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8694, pp. 768–783. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10599-4_49

    Chapter  Google Scholar 

  5. Choi, Y., Choi, M., Kim, M., Ha, J.W., Kim, S., Choo, J.: StarGAN: unified generative adversarial networks for multi-domain image-to-image translation. arXiv preprint arXiv:1711.09020 (2017)

  6. Danihelka, I., Lakshminarayanan, B., Uria, B., Wierstra, D., Dayan, P.: Comparison of maximum likelihood and GAN-based training of real NVPs. arXiv preprint arXiv:1705.05263 (2017). https://arxiv.org/abs/1705.05263

  7. Duong, C., Quach, K., Luu, K., Savvides, M.: Temporal non-volume preserving approach to facial age-progression and age-invariant face recognition. In: ICCV (2017)

    Google Scholar 

  8. Goodfellow, I.J., et al.: Generative adversarial networks. In: NIPS (2014)

    Google Scholar 

  9. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: CVPR (2017)

    Google Scholar 

  10. Johnson, J., Alahi, A., Li, F.: Perceptual losses for real-time style transfer and super-resolution. In: ECCV (2016)

    Google Scholar 

  11. Karras, T., Aila, T., Laine, S., Lehtinen, J.: Progressive growing of GANs for improved quality, stability, and variation. arXiv preprint arXiv:1710.10196 (2017)

  12. Kemelmacher-Shlizerman, I., Suwajanakorn, S., Seitz, S.: Illumination-aware age progression. In: CVPR (2014)

    Google Scholar 

  13. Kim, T., Cha, M., Kim, H., Lee, J.K., Kim, J.: Learning to discover cross-domain relations with generative adversarial networks. In: ICML. PMLR, vol. 70, pp. 1857–1865 (2017)

    Google Scholar 

  14. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: ICLR (2015). https://arxiv.org/abs/1412.6980

  15. Lample, G., Zeghidour, N., Usunier, N., Bordes, A., Denoyer, L., Ranzato, M.: Fader networks: Manipulating images by sliding attributes. In: NIPS (2017)

    Google Scholar 

  16. Lee, M., Seok, J.: Controllable generative adversarial network. arXiv preprint arXiv:1708.00598 (2017)

  17. Liu, M.Y., Breuel, T., Kautz, J.: Unsupervised image-to-image translation networks. In: NIPS (2017)

    Google Scholar 

  18. Lopez-Paz, D., Oquab, M.: Revisiting classifier two-sample tests. In: ICLR (2017). https://arxiv.org/abs/1610.06545

  19. LynnHo (GitHub user): CycleGAN Tensorflow PyTorch. https://github.com/LynnHo/CycleGAN-Tensorflow-PyTorch-Simple, gitHub repository

  20. Mitchell, D.P., Netravali, A.N.: Reconstruction filters in computer-graphics. ACM Siggraph Comput. Graph. 22(4), 221–228 (1988)

    Article  Google Scholar 

  21. Rothe, R., Timofte, R., Gool, L.V.: DEX: Deep EXpectation of apparent age from a single image. In: ICCV, Looking at People Workshop (2015)

    Google Scholar 

  22. Schroff, F., Kalenichenko, D., Philbin, J.: FaceNet: a unified embedding for face recognition and clustering. In: CVPR (2015)

    Google Scholar 

  23. Shrivastava, A., Pfister, T., Tuzel, O., Susskind, J., Wang, W., Webb, R.: Learning from simulated and unsupervised images through adversarial training. In: CVPR (2017). https://arxiv.org/abs/1612.07828

  24. Theis, L., van den Oord, A., Bethge, M.: A note on the evaluation of generative models. In: ICLR (2016). https://arxiv.org/abs/1511.01844

  25. Tiddeman, B., Burt, M., Perrett, D.: Prototyping and transforming facial textures for perception research. IEEE Comput. Graph. Appl. 21(5), 42–50 (2001)

    Article  Google Scholar 

  26. Wu, Y., Burda, Y., Salakhutdinov, R., Grosse, R.: On the quantitative analysis of decoder-based generative models. In: ICLR (2017). https://arxiv.org/abs/1611.04273

  27. Yi, Z., Zhang, H., Tan, P., Gong, M.: DualGAN: unsupervised dual learning for image-to-image translation. In: ICCV (2017)

    Google Scholar 

  28. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: ICCV (2017)

    Google Scholar 

Download references

Acknowledgments

This research was supported by GenMind Ltd. and the Academy of Finland grants 308640, 277685, and 295081. We acknowledge the computational resources provided by the Aalto Science-IT project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ari Heljakka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Heljakka, A., Solin, A., Kannala, J. (2018). Recursive Chaining of Reversible Image-to-Image Translators for Face Aging. In: Blanc-Talon, J., Helbert, D., Philips, W., Popescu, D., Scheunders, P. (eds) Advanced Concepts for Intelligent Vision Systems. ACIVS 2018. Lecture Notes in Computer Science(), vol 11182. Springer, Cham. https://doi.org/10.1007/978-3-030-01449-0_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-01449-0_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-01448-3

  • Online ISBN: 978-3-030-01449-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics