Skip to main content

Optimising Data for Exemplar-Based Inpainting

  • Conference paper
  • First Online:
Advanced Concepts for Intelligent Vision Systems (ACIVS 2018)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11182))

Abstract

Optimisation of inpainting data plays an important role in inpainting-based codecs. For diffusion-based inpainting, it is well-known that a careful data selection has a substantial impact on the reconstruction quality. However, for exemplar-based inpainting, which is advantageous for highly textured images, no data optimisation strategies have been explored yet. In our paper, we propose the first data optimisation approach for exemplar-based inpainting. It densifies the known data iteratively: New data points are added by dithering the current error map. Afterwards, the data mask is further improved by nonlocal pixel exchanges. Experiments demonstrate that our method yields significant improvements for exemplar-based inpainting with sparse data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adam, R.D., Peter, P., Weickert, J.: Denoising by inpainting. In: Lauze, F., Dong, Y., Dahl, A.B. (eds.) SSVM 2017. LNCS, vol. 10302, pp. 121–132. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-58771-4_10

    Chapter  Google Scholar 

  2. Arias, P., Facciolo, G., Caselles, V., Sapiro, G.: A variational framework for exemplar-based image inpainting. Int. J. Comput. Vis. 93(3), 319–347 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Belhachmi, Z., Bucur, D., Burgeth, B., Weickert, J.: How to choose interpolation data in images. SIAM J. Appl. Math. 70(1), 333–352 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bertalmio, M., Sapiro, G., Caselles, V., Ballester, C.: Image inpainting. In: Proceedings of SIGGRAPH 2000, pp. 417–424. ACM Press, New Orleans, July 2000

    Google Scholar 

  5. Chen, Y., Ranftl, R., Pock, T.: A bi-level view of inpainting-based image compression. In: Kúkelová, Z., Heller, J. (eds.) Proceedings of Computer Vision Winter Workshop, Křtiny, Czech Republic, February 2014

    Google Scholar 

  6. Criminisi, A., Pérez, P., Toyama, K.: Region filling and object removal by exemplar-based image inpainting. IEEE Trans. Image Process. 13(9), 1200–1212 (2004)

    Article  Google Scholar 

  7. Efros, A.A., Leung, T.K.: Texture synthesis by non-parametric sampling. In: Proceedings of IEEE International Conference on Computer Vision, vol. 2, pp. 1033–1038. IEEE, Kerkyra, September 1999

    Google Scholar 

  8. Facciolo, G., Arias, P., Caselles, V., Sapiro, G.: Exemplar-based interpolation of sparsely sampled images. In: Cremers, D., Boykov, Y., Blake, A., Schmidt, F.R. (eds.) EMMCVPR 2009. LNCS, vol. 5681, pp. 331–344. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03641-5_25

    Chapter  Google Scholar 

  9. Floyd, R.W., Steinberg, L.: An adaptive algorithm for spatial greyscale. Soc. Inf. Disp. 17(2), 75–77 (1976)

    Google Scholar 

  10. Galić, I., Weickert, J., Welk, M., Bruhn, A., Belyaev, A., Seidel, H.P.: Image compression with anisotropic diffusion. J. Math. Imaging Vis. 31(2–3), 255–269 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Guillemot, C., Meur, O.L.: Image inpainting: overview and recent advances. IEEE Signal Process. Mag. 31(1), 127–144 (2014)

    Article  Google Scholar 

  12. Heeger, D.J., Bergen, J.R.: Pyramid-based texture analysis/synthesis. In: Proceedings of SIGGRAPH 1995, pp. 229–238. ACM Press, Los Angeles, July 1995

    Google Scholar 

  13. Hoeltgen, L., Setzer, S., Weickert, J.: An optimal control approach to find sparse data for laplace interpolation. In: Heyden, A., Kahl, F., Olsson, C., Oskarsson, M., Tai, X.-C. (eds.) EMMCVPR 2013. LNCS, vol. 8081, pp. 151–164. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40395-8_12

    Chapter  Google Scholar 

  14. Hoffmann, S., Mainberger, M., Weickert, J., Puhl, M.: Compression of depth maps with segment-based homogeneous diffusion. In: Kuijper, A., Bredies, K., Pock, T., Bischof, H. (eds.) SSVM 2013. LNCS, vol. 7893, pp. 319–330. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38267-3_27

    Chapter  Google Scholar 

  15. Liang, L., Liu, C., Xu, Y.Q., Guo, B., Shum, H.Y.: Real-time texture synthesis by patch-based sampling. ACM Trans. Graph. 20(3), 127–150 (2001)

    Article  Google Scholar 

  16. Mainberger, M., et al.: Optimising spatial and tonal data for homogeneous diffusion inpainting. In: Bruckstein, A.M., ter Haar Romeny, B.M., Bronstein, A.M., Bronstein, M.M. (eds.) SSVM 2011. LNCS, vol. 6667, pp. 26–37. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-24785-9_3

    Chapter  Google Scholar 

  17. Masnou, S., Morel, J.M.: Level lines based disocclusion. In: Proceedings of 1998 IEEE International Conference on Image Processing, Chicago, IL, vol. 3, pp. 259–263, October 1998

    Google Scholar 

  18. Peter, P., Kaufhold, L., Weickert, J.: Turning diffusion-based image colorization into efficient color compression. IEEE Trans. Image Process. 26(2), 860–869 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  19. Peter, P., Weickert, J.: Compressing images with diffusion- and exemplar-based inpainting. In: Aujol, J.-F., Nikolova, M., Papadakis, N. (eds.) SSVM 2015. LNCS, vol. 9087, pp. 154–165. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18461-6_13

    Chapter  MATH  Google Scholar 

  20. Schmaltz, C., Gwosdek, P., Bruhn, A., Weickert, J.: Electrostatic halftoning. Comput. Graph. Forum 29(8), 2313–2327 (2010)

    Article  Google Scholar 

  21. Schmaltz, C., Peter, P., Mainberger, M., Ebel, F., Weickert, J., Bruhn, A.: Understanding, optimising and extending data compression with anisotropic diffusion. Int. J. Comput. Vis. 108(3), 222–240 (2014)

    Article  MathSciNet  Google Scholar 

  22. Schönlieb, C.B.: Partial Differential Equation Methods for Image Inpainting. Cambridge University Press, Cambridge (2015)

    Book  MATH  Google Scholar 

  23. Ulichney, R.: Digital Halftoning. The MIT Press, London (1987)

    Book  Google Scholar 

Download references

Acknowledgement

Part of our research has been funded by the ERC Advanced Grant INCOVID. This is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pinak Bheed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Karos, L., Bheed, P., Peter, P., Weickert, J. (2018). Optimising Data for Exemplar-Based Inpainting. In: Blanc-Talon, J., Helbert, D., Philips, W., Popescu, D., Scheunders, P. (eds) Advanced Concepts for Intelligent Vision Systems. ACIVS 2018. Lecture Notes in Computer Science(), vol 11182. Springer, Cham. https://doi.org/10.1007/978-3-030-01449-0_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-01449-0_46

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-01448-3

  • Online ISBN: 978-3-030-01449-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics