Abstract
Saliency detection has been an interesting research field. Some researchers consider it as a segmentation problem some others treat it differently. In this paper, we propose a novel video saliency framework that detects and recognizes the object of interest.
Starting from the assumption that spatial and temporal information of an input video frame can provide better saliency results than using each information alone, we propose a spatio-temporal saliency model for detecting salient objects in videos. First, spatial saliency is measured at patch-level by fusing local contrasts with spatial priors to label each patch as a foreground or a background one. Then, the newly proposed motion distinctiveness feature and temporal gradient magnitude measure are used to obtain the temporal saliency maps. Spatial and temporal saliency maps are fused together into one master saliency map.
Object classification framework contains training and testing stage. On the training phase, we use a convolutional neural network to extract features of the proposed training set. Then, deep features are fed into a Support Vector Machine classifier to produce a classification Model. This model will be used to predict the class of the salient object.
Despite the framework is simple to implement and efficient to run, it has shown good performances and achieved good results.
Experiments on two standard benchmark datasets for video saliency have shown that the proposed temporal cues improve saliency estimation results. Results are compared to six state-of-the-art methods on two benchmark datasets.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Borji, A.: What is a salient object? a dataset and a baseline model for salient object detection. IEEE Trans. Image Process. 24(2), 742–756 (2015)
Borji, A., Cheng, M.M., Jiang, H., Li, J.: Salient object detection: a survey. arXiv preprint arXiv:1411.5878 (2014)
Brox, T., Bregler, C., Malik, J.: Large displacement optical flow. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2009, pp. 41–48. IEEE (2009)
Bruce, N., Tsotsos, J.: Saliency based on information maximization. In: Advances in Neural Information Processing Systems, pp. 155–162 (2005)
Cheng, M.M., Mitra, N.J., Huang, X., Torr, P.H., Hu, S.M.: Global contrast based salient region detection. IEEE Trans. Patt. Anal. Mach. Intell. 37(3), 569–582 (2015)
Fukuchi, K., Miyazato, K., Kimura, A., Takagi, S., Yamato, J.: Saliency-based video segmentation with graph cuts and sequentially updated priors. In: 2009 IEEE International Conference on Multimedia and Expo, pp. 638–641. IEEE (2009)
Goferman, S., Zelnik-Manor, L., Tal, A.: Context-aware saliency detection. IEEE Trans. Patt. Anal. Mach. Intell. 34(10), 1915–1926 (2012)
Harel, J., Koch, C., Perona, P., et al.: Graph-based visual saliency. In: NIPS, vol. 1, p. 5 (2006)
Huang, L., Pashler, H.: A boolean map theory of visual attention. Psychol. Rev. 114(3), 599 (2007)
Itti, L., Baldi, P.: A principled approach to detecting surprising events in video. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005), vol. 1, pp. 631–637. IEEE (2005)
Itti, L., Koch, C., Niebur, E.: A model of saliency-based visual attention for rapid scene analysis. IEEE Trans. Patt. Anal. Mach. Intell. 20(11), 1254–1259 (1998)
Jiang, H., Wang, J., Yuan, Z., Liu, T., Zheng, N., Li, S.: Automatic salient object segmentation based on context and shape prior. In: BMVC, vol. 6, p. 9 (2011)
Kalboussi, R., Abdellaoui, M., Douik, A.: Video saliency detection based on boolean map theory. In: Battiato, S., Gallo, G., Schettini, R., Stanco, F. (eds.) ICIAP 2017. LNCS, vol. 10484, pp. 119–128. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68560-1_11
Kalboussi, R., Abdellaoui, M., Douik, A.: Video saliency using supervoxels. In: De Pietro, G., Gallo, L., Howlett, R.J., Jain, L.C. (eds.) KES-IIMSS 2017. SIST, vol. 76, pp. 544–553. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-59480-4_54
Kalboussi, R., Azaza, A., Abdellaoui, M., Douik, A.: Detecting video saliency via local motion estimation. In: 2017 IEEE/ACS 14th International Conference on Computer Systems and Applications (AICCSA), pp. 738–744. IEEE (2017)
Kim, J., Han, D., Tai, Y.W., Kim, J.: Salient region detection via high-dimensional color transform. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 883–890 (2014)
Li, F., Kim, T., Humayun, A., Tsai, D., Rehg, J.M.: Video segmentation by tracking many figure-ground segments. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2192–2199 (2013)
Li, Y., Hou, X., Koch, C., Rehg, J.M., Yuille, A.L.: The secrets of salient object segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 280–287 (2014)
Mancas, M., Riche, N., Leroy, J., Gosselin, B.: Abnormal motion selection in crowds using bottom-up saliency. In: 2011 18th IEEE International Conference on Image Processing, pp. 229–232. IEEE (2011)
Mauthner, T., Possegger, H., Waltner, G., Bischof, H.: Encoding based saliency detection for videos and images. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2494–2502 (2015)
Qi, S., Ming, D., Ma, J., Sun, X., Tian, J.: Robust method for infrared small-target detection based on boolean map visual theory. Appl. Opt. 53(18), 3929–3940 (2014)
Rahman, A., Houzet, D., Pellerin, D., Marat, S., Guyader, N.: Parallel implementation of a spatio-temporal visual saliency model. J. Real-Time Image Process. 6(1), 3–14 (2011)
Rahtu, E., Kannala, J., Salo, M., Heikkilä, J.: Segmenting salient objects from images and videos. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6315, pp. 366–379. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15555-0_27
Scharfenberger, C., Wong, A., Fergani, K., Zelek, J.S., Clausi, D.A.: Statistical textural distinctiveness for salient region detection in natural images. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 979–986 (2013)
Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Patt. Anal. Mach. Intell. 22(8), 888–905 (2000)
Singh, A., Chu, C.H.H., Pratt, M.: Learning to predict video saliency using temporal superpixels. In: 4th International Conference on Pattern Recognition Applications and Methods, pp. 201–209 (2015)
Treisman, A.M., Gelade, G.: A feature-integration theory of attention. Cogn. Psychol. 12(1), 97–136 (1980)
Wang, W., Shen, J., Porikli, F.: Saliency-aware geodesic video object segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3395–3402 (2015)
Yeh, H.H., Liu, K.H., Chen, C.S.: Salient object detection via local saliency estimation and global homogeneity refinement. Patt. Recogn. 47(4), 1740–1750 (2014)
Zhang, D., Javed, O., Shah, M.: Video object segmentation through spatially accurate and temporally dense extraction of primary object regions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 628–635 (2013)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
Kalboussi, R., Abdellaoui, M., Douik, A. (2018). Detecting and Recognizing Salient Object in Videos. In: Blanc-Talon, J., Helbert, D., Philips, W., Popescu, D., Scheunders, P. (eds) Advanced Concepts for Intelligent Vision Systems. ACIVS 2018. Lecture Notes in Computer Science(), vol 11182. Springer, Cham. https://doi.org/10.1007/978-3-030-01449-0_6
Download citation
DOI: https://doi.org/10.1007/978-3-030-01449-0_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-01448-3
Online ISBN: 978-3-030-01449-0
eBook Packages: Computer ScienceComputer Science (R0)