Skip to main content

Complete Lyapunov Functions: Computation and Applications

  • Conference paper
  • First Online:
Simulation and Modeling Methodologies, Technologies and Applications (SIMULTECH 2017)

Abstract

Many phenomena in disciplines such as engineering, physics and biology can be represented as dynamical systems given by ordinary differential equations (ODEs). For their analysis as well as for modelling purposes it is desirable to obtain a complete description of a dynamical system. Complete Lyapunov functions, or quasi-potentials, describe the dynamical behaviour without solving the ODE for many initial conditions. In this paper, we use mesh-free numerical approximation to compute a complete Lyapunov function and to determine the chain-recurrent set, containing the attractors and repellers of the system. We use a homogeneous evaluation grid for the iterative construction, and thus improve a previous method. Finally, we apply our methodology to several examples, including one to compute an epigenetic landscape, modelling a bistable network of two genes. This illustrates the capability of our method to solve interdisciplinary problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bhattacharya, S., Zhang, Q., Andersen, M.E.: A deterministic map of Waddington’s epigenetic landscape for cell fate specification. BMC Syst. Biol. 5, 85 (2011)

    Article  Google Scholar 

  2. Doban A.: Stability domains computation and stabilization of nonlinear systems: implications for biological systems. Ph.D. thesis. Eindhoven University of Technology (2016)

    Google Scholar 

  3. Doban A., Lazar M.: Computation of Lyapunov functions for nonlinear differential equations via a Yoshizawa-type construction. In: 10th IFAC Symposium on Nonlinear Control Systems NOLCOS 2016, Monterey, California, USA, 23–25 August 2016, IFAC-PapersOnLine, 2016, vol. 49, no. 18, pp. 29–34 (2016). ISSN 2405-8963

    Article  Google Scholar 

  4. Anderson, J., Papachristodoulou, A.: Advances in computational Lyapunov Analysis using sum-of-squares programming. Discrete Contin. Dyn. Syst. Ser. B 20, 2361–2381 (2015)

    Article  MathSciNet  Google Scholar 

  5. Auslander, J.: Generalized recurrence in dynamical systems. Contr. Diff. Eq. 3, 65–74 (1964)

    MathSciNet  MATH  Google Scholar 

  6. Björnsson J., Giesl P., Hafstein S.: Algorithmic verification of approximations to complete Lyapunov functions. In: Proceedings of the 21st International Symposium on Mathematical Theory of Networks and Systems (no. 0180), pp. 1181–1188 (2014)

    Google Scholar 

  7. Björnsson J., Giesl P., Hafstein S., Kellett C., Li H.: Computation of continuous and piecewise affine Lyapunov functions by numerical approximations of the Massera construction. In: Proceedings of the CDC 53rd IEEE Conference on Decision and Control (2014)

    Google Scholar 

  8. Björnsson, J., Giesl, P., Hafstein, S., Kellett, C., Li, H.: Computation of Lyapunov functions for systems with multiple attractors. Discrete Contin. Dyn. Syst. 9, 4019–4039 (2015)

    Article  MathSciNet  Google Scholar 

  9. Ban, H., Kalies, W.: A computational approach to Conley’s decomposition theorem. J. Comput. Nonlinear Dyn. 1, 312–319 (2006)

    Article  Google Scholar 

  10. Isolated Invariant Sets and the Morse Index, C. Conley, American Mathematical Society, CBMS Regional Conference Series no. 3 (1978)

    Google Scholar 

  11. Dellnitz, M., Froyland, G., Junge, O.: The algorithms behind GAIO - set oriented numerical methods for dynamical systems. In: Ergodic Theory Analysis and Efficient Simulation of Dynamical Systems, pp. 145–174, 805–807. Springer, Berlin (2001)

    Chapter  Google Scholar 

  12. Dellnitz, M., Junge, O.: Set oriented numerical methods for dynamical systems. In: Handbook of Dynamical Systems, North-Holland Amsterdam, vol. 2, pp. 221–264 (2002)

    MATH  Google Scholar 

  13. Giesl, P.: Construction of Global Lyapunov Functions Using Radial Basis Functions. Lecture Notes in Math., vol. 1904. Springer (2007)

    Google Scholar 

  14. Giesl, P., Wendland, H.: Meshless collocation: error estimates with application to Dynamical Systems. SIAM J. Numer. Anal. 45, 1723–1741 (2007)

    Article  MathSciNet  Google Scholar 

  15. Giesl, P., Hafstein, S.: Review of computational methods for Lyapunov functions. Discrete Contin. Dyn. Syst. Ser. B 20, 2291–2331 (2015)

    Article  MathSciNet  Google Scholar 

  16. Goullet, A., Harker, S., Mischaikow, K., Kalies, W., Kasti, D.: Efficient computation of Lyapunov functions for morse decompositions. Discrete Contin. Dyn. Syst. Ser. B 20, 2419–2451 (2015)

    Article  MathSciNet  Google Scholar 

  17. Hafstein, S.: An algorithm for constructing Lyapunov functions. Electron. J. Diff. Eqns. (2007)

    Google Scholar 

  18. Hsu, C.S.: Cell-to-Cell Mapping. Applied Mathematical Sciences, vol. 64, Springer, New York (1987)

    Book  Google Scholar 

  19. Hurley, M.: Noncompact chain recurrence and attraction. Proc. Am. Math. Soc. 115, 1139–1148 (1992)

    Article  MathSciNet  Google Scholar 

  20. Hurley, M.: Lyapunov functions and attractors in arbitrary metric spaces. Proc. Am. Math. Soc. 126, 245–256 (1998)

    Article  MathSciNet  Google Scholar 

  21. Johansson, M.: Piecewise linear control systems, Ph.D. thesis: Lund University Sweden (1999)

    Google Scholar 

  22. Johansen, T.: Computation of Lyapunov functions for smooth nonlinear systems using convex optimization. Automatica 36, 1617–1626 (2000)

    Article  MathSciNet  Google Scholar 

  23. Kamyar, R., Peet, M.: Polynomial optimization with applications to stability analysis and control - an alternative to sum of squares. Discrete Contin. Dyn. Syst. Ser. B 20, 2383–2417 (2015)

    Article  MathSciNet  Google Scholar 

  24. Kalies, W., Mischaikow, K., VanderVorst, R.: An algorithmic approach to chain recurrence. Found. Comput. Math. 5, 409–449 (2005)

    Article  MathSciNet  Google Scholar 

  25. Marinósson, S.: Lyapunov function construction for ordinary differential equations with linear programming. Dyn. Syst. Int. J. 17, 137–150 (2002)

    Article  MathSciNet  Google Scholar 

  26. Narcowich, F.J., Ward, J.D., Wendland, H.: Sobolev bounds on functions with scattered zeros with applications to radial basis function surface fitting. Math. Comp. 74, 743–763 (2005)

    Article  MathSciNet  Google Scholar 

  27. Wendland, H.: Error estimates for interpolation by compactly supported Radial Basis Functions of minimal degree. J. Approx. Theory 93, 258–272 (1998)

    Article  MathSciNet  Google Scholar 

  28. Hurley, M.: Chain recurrence semiflows and gradient. J. Dyn. Diff. Eq. 7, 437–456 (1995)

    Article  MathSciNet  Google Scholar 

  29. Lyapunov A. M.: The general problem of the stability of motion. Int. J. Control 55, 521–790 (1992). Translated by A. T. Fuller from Édouard Davaux’s French translation (1907) of the 1892 Russian original

    Google Scholar 

  30. Osipenko, G.: Dynamical Systems Graphs and Algorithms. Lecture Notes in Mathematics, vol. 1889. Springer, Berlin (2007)

    Google Scholar 

  31. Argáez, C., Giesl, P., Hafstein, S.: Analysing dynamical systems towards computing complete Lyapunov functions. In: Proceedings of the 7th International Conference on Simulation and Modeling Methodologies Technologies and Applications, SIMULTECH 2017, Madrid, Spain (2017)

    Google Scholar 

  32. Argáez, C., Giesl, P., Hafstein, S.: Computational approach for complete Lyapunov functions. In: Proceedings in Mathematics and Statistics. Springer (2018, accepted for publication)

    Google Scholar 

  33. Argáez, C., Giesl, P., Hafstein, S.: Iterative construction of complete Lyapunov functions. Submitted

    Google Scholar 

  34. Argáez, C., Giesl, P., Hafstein, S.: Computation of complete Lyapunov functions for three-dimensional systems. Submitted

    Google Scholar 

  35. Conley, C.: The gradient structure of a flow I. Ergodic Theory Dyn. Syst. 8, 11–26 (1988)

    Article  MathSciNet  Google Scholar 

  36. Wendland, H.: Scattered Data Approximation. Cambridge Monographs on Applied and Computational Mathematics, vol. 17. Cambridge University Press, Cambridge (2005)

    Google Scholar 

  37. Krauskopf, B., Osinga, H., Doedel, E. J., Henderson, M., Guckenheimer, J., Vladimirsky, A.,Dellnitz, M., Junge, O.: A survey of methods for computing (un)stable manifolds of vector fields. Int. J. Bifur. Chaos Appl. Sci. Eng. 15, 763–791 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

First author in this paper is supported by the Icelandic Research Fund (Rannís) grant number 163074-052, Complete Lyapunov functions: Efficient numerical computation. Special thanks to Dr. Jean-Claude Berthet for all his good comments and advices on C++.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Argáez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Argáez, C., Giesl, P., Hafstein, S. (2019). Complete Lyapunov Functions: Computation and Applications. In: Obaidat, M., Ören, T., Rango, F. (eds) Simulation and Modeling Methodologies, Technologies and Applications . SIMULTECH 2017. Advances in Intelligent Systems and Computing, vol 873. Springer, Cham. https://doi.org/10.1007/978-3-030-01470-4_11

Download citation

Publish with us

Policies and ethics