Skip to main content

Game Theoretic Security Framework for Quantum Key Distribution

  • Conference paper
  • First Online:
Decision and Game Theory for Security (GameSec 2018)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 11199))

Included in the following conference series:

  • 1996 Accesses

Abstract

In this paper, we propose a game-theoretic model of security for quantum key distribution (QKD) protocols. QKD protocols allow two parties to agree on a shared secret key, secure against an adversary bounded only by the laws of physics (as opposed to classical key distribution protocols which, by necessity, require computational assumptions to be placed on the power of an adversary). We investigate a novel framework of security using game theory where all participants (including the adversary) are rational. We will show that, in this framework, certain impossibility results for QKD in the standard adversarial model of security still remain true here. However, we will also show that improved key-rate efficiency is possible in our game-theoretic security model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Scarani, V., Bechmann-Pasquinucci, H., Cerf, N.J., Dušek, M., Lütkenhaus, N., Peev, M.: The security of practical quantum key distribution. Rev. Mod. Phys. 81, 1301–1350 (2009)

    Article  Google Scholar 

  2. Katz, J.: Bridging game theory and cryptography: recent results and future directions. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 251–272. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78524-8_15

    Chapter  MATH  Google Scholar 

  3. Miao, F., Zhu, Q., Pajic, M., Pappas, G.J.: A hybrid stochastic game for secure control of cyber-physical systems. Automatica 93, 55–63 (2018)

    Article  MathSciNet  Google Scholar 

  4. Zhu, Q., Basar, T.: Game-theoretic methods for robustness, security, and resilience of cyberphysical control systems: games-in-games principle for optimal cross-layer resilient control systems. IEEE Control Syst. 35(1), 46–65 (2015)

    Article  MathSciNet  Google Scholar 

  5. Manshaei, M., Zhu, Q., Alpcan, T., Basar, T., Hubaux, J.: Game theory meets network security and privacy. ACM Comput. Surv. 45(3), 25:1–25:39 (2013)

    Article  Google Scholar 

  6. Zhu, M., Martinez, S.: Stackelberg-game analysis of correlated attacks in cyber-physical systems. In: American Control Conference, ACC, pp. 4063–4068, June 2011

    Google Scholar 

  7. Maitra, A., De, S.J., Paul, G., Pal, A.K.: Proposal for quantum rational secret sharing. Phys. Rev. A 92(2), 022305 (2015)

    Article  Google Scholar 

  8. Dou, Z., Xu, G., Chen, X.B., Liu, X., Yang, Y.X.: A secure rational quantum state sharing protocol. Sci. China Inf. Sci. 61(2), 022501 (2018)

    Article  MathSciNet  Google Scholar 

  9. Zhou, L., Sun, X., Su, C., Liu, Z., Choo, K.K.R.: Game theoretic security of quantum bit commitment. Inf. Sci. (2018)

    Google Scholar 

  10. Maitra, A., Paul, G., Pal, A.K.: Millionaires problem with rational players: a unified approach in classical and quantum paradigms. arXiv preprint (2015)

    Google Scholar 

  11. Qin, H., Tang, W.K., Tso, R.: Establishing rational networking using the DL04 quantum secure direct communication protocol. Quantum Inf. Process. 17(6), 152 (2018)

    Article  MathSciNet  Google Scholar 

  12. Das, B., Roy, U., et al.: Cooperative quantum key distribution for cooperative service-message passing in vehicular ad hoc networks. Int. J. Comput. Appl. 102, 37–42 (2014). ISSN 0975 8887

    Google Scholar 

  13. Houshmand, M., Houshmand, M., Mashhadi, H.R.: Game theory based view to the quantum key distribution BB84 protocol. In: 2010 Third International Symposium on Intelligent Information Technology and Security Informatics, IITSI, pp. 332–336. IEEE (2010)

    Google Scholar 

  14. Kaur, H., Kumar, A.: Game-theoretic perspective of Ping-Pong protocol. Phys. A: Stat. Mech. Appl. 490, 1415–1422 (2018)

    Article  MathSciNet  Google Scholar 

  15. Boström, K., Felbinger, T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89(18), 187902 (2002)

    Article  Google Scholar 

  16. Lucamarini, M., Mancini, S.: Secure deterministic communication without entanglement. Phys. Rev. Lett. 94(14), 140501 (2005)

    Article  Google Scholar 

  17. Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  18. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, New York, vol. 175 (1984)

    Google Scholar 

  19. Bennett, C.H.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68, 3121–3124 (1992)

    Article  MathSciNet  Google Scholar 

  20. Renner, R., Gisin, N., Kraus, B.: Information-theoretic security proof for quantum-key-distribution protocols. Phys. Rev. A 72, 012332 (2005)

    Article  Google Scholar 

  21. Shor, P.W., Preskill, J.: Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 85, 441–444 (2000)

    Article  Google Scholar 

  22. Csiszár, I., Korner, J.: Broadcast channels with confidential messages. IEEE Trans. Inf. Theory 24(3), 339–348 (1978)

    Article  MathSciNet  Google Scholar 

  23. Krawec, W.O.: Quantum key distribution with mismatched measurements over arbitrary channels. Quantum Inf. Comput. 17(3), 209–241 (2017)

    MathSciNet  Google Scholar 

  24. Phoenix, S.J., Barnett, S.M., Townsend, P.D., Blow, K.: Multi-user quantum cryptography on optical networks. J. Mod. Opt. 42(6), 1155–1163 (1995)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walter O. Krawec .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Krawec, W.O., Miao, F. (2018). Game Theoretic Security Framework for Quantum Key Distribution. In: Bushnell, L., Poovendran, R., BaÅŸar, T. (eds) Decision and Game Theory for Security. GameSec 2018. Lecture Notes in Computer Science(), vol 11199. Springer, Cham. https://doi.org/10.1007/978-3-030-01554-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-01554-1_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-01553-4

  • Online ISBN: 978-3-030-01554-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics