Skip to main content

A Robust Optimization Approach to Designing Near-Optimal Strategies for Constant-Sum Monitoring Games

  • Conference paper
  • First Online:
Decision and Game Theory for Security (GameSec 2018)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 11199))

Included in the following conference series:

  • 1942 Accesses

Abstract

We consider the problem of monitoring a set of targets, using scarce monitoring resources (e.g., sensors) that are subject to adversarial attacks. In particular, we propose a constant-sum Stackelberg game in which a defender (leader) chooses among possible monitoring locations, each covering a subset of targets, while taking into account the monitor failures induced by a resource-constrained attacker (follower). In contrast to the previous Stackelberg security models in which the defender uses mixed strategies, here, the defender must commit to pure strategies. This problem is highly intractable as both players’ strategy sets are exponentially large. Thus, we propose a solution methodology that automatically partitions the set of adversary’s strategies and maps each subset to a coverage policy. These policies are such that they do not overestimate the defender’s payoff. We show that the partitioning problem can be reformulated exactly as a mixed-integer linear program (MILP) of moderate size which can be solved with off-the-shelf solvers. We demonstrate the effectiveness of our proposed approach in various settings. In particular, we illustrate that even with few policies, we are able to closely approximate the optimal solution and outperform the heuristic solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Throughout the paper, we will use the terms “cover”, “monitor”, “protect” interchangeably.

References

  1. Bard, N., Nicholas, D., Szepesvaári, C., Bowling, M.: Decision-theoretic clustering of strategies. In: Proceedings of the 2015 International Conference on Autonomous Agents and Multiagent Systems, pp. 17–25. International Foundation for Autonomous Agents and Multiagent Systems (2015)

    Google Scholar 

  2. Basak, A.: Abstraction using analysis of subgames. In: Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, pp. 4196–4197. AAAI Press (2016)

    Google Scholar 

  3. Ben-Tal, A., El Ghaoui, L., Nemirovski, A.: Robust Optimization. Princeton University Press, Princeton (2009)

    Book  Google Scholar 

  4. Ben-Tal, A., Goryashko, A., Guslitzer, E., Nemirovski, A.: Adjustable robust solutions of uncertain linear programs. Math. Program. 99(2), 351–376 (2004)

    Article  MathSciNet  Google Scholar 

  5. Bertsimas, D., Brown, D.B., Caramanis, C.: Theory and applications of robust optimization. SIAM Rev. 53(3), 464–501 (2011)

    Article  MathSciNet  Google Scholar 

  6. Bertsimas, D., Caramanis, C.: Finite adaptability in multistage linear optimization. IEEE Trans. Autom. Control 55(12), 2751–2766 (2010)

    Article  MathSciNet  Google Scholar 

  7. Bogunovic, I., Mitrović, S., Scarlett, J., Cevher, V.: Robust submodular maximization: a non-uniform partitioning approach. arXiv preprint arXiv:1706.04918 (2017)

  8. Bošanskỳ, B., Jiang, A.X., Tambe, M., Kiekintveld, C.: Combining compact representation and incremental generation in large games with sequential strategies. In: Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, pp. 812–818. AAAI Press (2015)

    Google Scholar 

  9. Brown, G., Carlyle, M., Salmerón, J., Wood, K.: Defending critical infrastructure. Interfaces 36(6), 530–544 (2006)

    Article  Google Scholar 

  10. Dahan, M., Sela, L., Amin, S.: Network monitoring under strategic disruptions. arXiv preprint arXiv:1705.00349 (2017)

  11. Hanasusanto, G.A., Kuhn, D., Wiesemann, W.: K-adaptability in two-stage robust binary programming. Oper. Res. 63(4), 877–891 (2015)

    Article  MathSciNet  Google Scholar 

  12. Jain, M., Korzhyk, D., Vaněk, O., Conitzer, V., Pěchouček, M., Tambe, M.: A double oracle algorithm for zero-sum security games on graphs. In: 10th International Conference on Autonomous Agents and Multiagent Systems, vol. 1, pp. 327–334 (2011)

    Google Scholar 

  13. Krause, A., McMahan, H.B., Guestrin, C., Gupta, A.: Robust submodular observation selection. J. Mach. Learn. Res. 9(Dec), 2761–2801 (2008)

    MATH  Google Scholar 

  14. Orlin, J.B., Schulz, A.S., Udwani, R.: Robust monotone submodular function maximization. In: Louveaux, Q., Skutella, M. (eds.) IPCO 2016. LNCS, vol. 9682, pp. 312–324. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-33461-5_26

    Chapter  Google Scholar 

  15. Pita, J., Tambe, M., Kiekintveld, C., Cullen, S., Steigerwald, E.: GUARDS: game theoretic security allocation on a national scale. In: 10th International Conference on Autonomous Agents and Multiagent Systems, vol. 1, pp. 37–44. International Foundation for Autonomous Agents and Multiagent Systems (2011)

    Google Scholar 

  16. Tsai, J., Kiekintveld, C., Ordonez, F., Tambe, M., Rathi, S.: IRIS-a tool for strategic security allocation in transportation networks (2009)

    Google Scholar 

  17. Tzoumas, V., Gatsis, K., Jadbabaie, A., Pappas, G.J.: Resilient monotone submodular function maximization. arXiv preprint arXiv:1703.07280 (2017)

  18. Vayanos, P., Kuhn, D., Rustem, B.: Decision rules for information discovery in multi-stage stochastic programming. In: 2011 50th IEEE Conference on Decision and Control and European Control Conference (CDC-ECC), pp. 7368–7373. IEEE (2011)

    Google Scholar 

Download references

Acknowledgement

This work was supported by the Army Research Office (W911NF-17-1-0370, W911NF-15-1-0515, W911NF-16-1-0069), National Science Foundation (CNS-1640624, IIS-1649972, and IIS-1526860), Office of Naval Research (N00014-15-1-2621), and the USC Office of the Provost and USC Viterbi School of Engineering.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aida Rahmattalabi .

Editor information

Editors and Affiliations

Appendices

A Exact Scenario-Based MILP

In Problem (5), the optimal pure strategy for the defender can be obtained from the solution of the following deterministic MILP problem which enumerates all the attacker pure strategies. This reformulation is exact, however, it requires a number of variables and constraints which is exponential in N. In this formulation \(y_{\varvec{\xi }, n}\) is a binary variable and it is equal to 1 iff under attack scenario \(\varvec{\xi }\), target n is covered.

(19)

Exact MILP Formulation of the K-Adaptability

The following reformulation is based on [11]. The objective function of the Problem (10) is identical to:

(20)

where \(\varDelta _{K}(\varvec{l}) = \{ \varvec{\lambda }\in \mathbb {R}_{+}: \varvec{e}^\top \varvec{\lambda }= 1, \lambda _{k} = 0, \forall k\in \mathcal K : l_{k} \ne 0\}\). We define , and \(\mathcal {L}_{+} := \{\varvec{l} \in \mathcal {L} > \varvec{0}\}\). Note that \(\varDelta _{K}(\varvec{l}) = \emptyset \) if and only if \(\varvec{l}>\varvec{0}\). If \(\varXi _{\text {c}}(\varvec{x}, \varvec{y}, \varvec{l}) =\emptyset \) for all \(\varvec{l} \in \mathcal {L}_{+}\), then the problem is equivalent to:

(21)

By applying the classical min-max theorem:

(22)

This problem is also equivalent to:

(23)

We note that if \(\varXi _{\text {c}}(\varvec{x}, \varvec{y}, \varvec{l}) \ne \emptyset \), for some \(\varvec{l} \in \mathcal {L}_{+}\) the objective of Problem (10) evaluates to \(-\infty \). Using the epigraph form, Problem (10) is equivalent to:

$$\begin{aligned} \begin{array}{clll} \max \displaystyle &{}&{} \tau &{} \\ \text {s.t.} &{}&{} {\varvec{x}\in \mathcal {U}}, \varvec{y}^{k} \in \{0,1\}^{N}, k \in \mathcal {K} &{}\\ &{}&{}\tau \in \mathbb {R}, \; \varvec{\lambda }(\varvec{l}) \in \varDelta _{K}(\varvec{l}), \; \varvec{l} \in \partial \mathcal {L} &{} \\ &{}&{} \tau \le \displaystyle \sum _{k\in \mathcal {K}}\lambda _{k}(\varvec{l})\sum _{n\in \mathcal T}U_n y^{k}_{n} , &{}\; \forall \varvec{l} \in \partial \mathcal {L}, \; \varvec{\xi }\in \varXi _{\text {c}}(\varvec{x},\varvec{y},\varvec{l}) \\ &{}&{}\varXi _{\text {c}}(\varvec{x}, \varvec{y}, \varvec{l}) = \emptyset ,&{} \; \forall \varvec{l} \in \mathcal {L}_{+}. \end{array} \end{aligned}$$
(24)

The semi-infinite constraint associated with \(\varvec{l} \in \partial \mathcal {L}\) is satisfied if and only if:

$$\begin{aligned} \begin{array}{cll} \min &{} \displaystyle \sum _{k\in \mathcal {K}}\lambda _{k}(\varvec{l})\sum _{n\in \mathcal T}U_n y^{k}_{n}\\ \text {s.t.} &{} {0 \le \xi _{n'} \le 1, \; \forall n'\in \mathcal N}\\ &{} \displaystyle \sum _{n'\in \mathcal N}\xi _{n'} \ge N - J \\ &{} \displaystyle y^{k}_{l_{k}} \ge \sum _{n' \in \delta (l_{k})}\xi _{n'}x_{n'} + 1, &{}\; \text {if } l_{k}>0 , \; \forall k \in \mathcal {K}\\ &{} \displaystyle y^{k}_{n} \le \sum _{n' \in \delta (n)} \xi _{n'}x_{n'}, \; \forall n\in \mathcal {T}, &{}\; \text {if } l_{k} = 0 , \; \forall k \in \mathcal {K} \\ \end{array} \end{aligned}$$
(25)

is greater than \(\tau \).

In order to obtain the dual formulation, we introduce an auxiliary variable \(\xi _{T+1} = 1\), and we rewrite the objective as: \((\sum _{k\in \mathcal {K}}\lambda _{k}(\varvec{l})\sum _{n\in \mathcal T}U_n y^{k}_{n})\;\xi _{T+1}\). Using strong linear programming duality:

$$\begin{aligned} \begin{array}{cll} \max &{} \displaystyle \sum _{n\in \mathcal {N}}-\alpha _{n}(\varvec{l}) + (N-J)\alpha _{N+1}(\varvec{l}) - \sum _{{\begin{matrix} k\in \mathcal {K}\\ l_{k} \ne 0 \end{matrix}}}(y^{k}_{l_{k}} -1)\nu _{k}(\varvec{l})+ \sum _{{\begin{matrix} k\in \mathcal {K} \\ l_{k} = 0 \end{matrix}} } \sum _{n\in \mathcal T}{y^{k}_{n}}\beta _{n}^{k}(\varvec{l}) + \alpha _{N+2}(\varvec{l}) &{}\\ \text {s.t.} &{} \alpha _{n}(\varvec{l}) \ge 0, n \in \{1,\ldots ,N+1\},\; \varvec{\beta }^{k}(\varvec{l}) \in \mathbb {R}^{N}_{+},\; \forall k \in \mathcal {K}, \; \varvec{\nu }(\varvec{l}) \in \mathbb {R}^{K}_{+} &{} \\ &{} - \alpha _{n}(\varvec{l}) + \alpha _{N+1}(\varvec{l}) - \displaystyle \sum _{{\begin{matrix} k\in \mathcal {K}\\ l_{k}\ne 0 \end{matrix}}}\sum _{n'\in \delta (l_{k})}{x_{n'}}\nu _{k}(\varvec{l}) + \displaystyle \sum _{{\begin{matrix} k\in \mathcal {K}\\ l_{k} = 0 \end{matrix}}}\sum _{n'\in \delta (n)}{x_{n'}}\beta _{n}^{k}(\varvec{l}) \le 0, \forall n \in \mathcal {T}, &{}\\ &{} \alpha _{N+2}(\varvec{l}) = \displaystyle \sum _{k\in \mathcal {K}}\lambda _{k}(\varvec{l})\sum _{n\in \mathcal T}U_n y^{k}_{n}. \end{array} \end{aligned}$$
(26)

Also, the last constraint in formulation (24) is satisfied if the following linear program is infeasible:

$$\begin{aligned} \begin{array}{clll} \min &{} \displaystyle 0 \\ \text {s.t.} &{} 0 \le \xi _{n} \le 1, &{} \;\forall n\in \mathcal N\\ &{} \displaystyle \sum _{n\in \mathcal N}\xi _{n} \ge N - J \\ &{} \displaystyle y^{k}_{l_{k}} \ge \sum _{n' \in \delta (l_{k})}\xi _{n'}x_{n'} + 1, \; &{} \forall k \in \mathcal {K},\; l_{k} \ne 0. \end{array} \end{aligned}$$
(27)

Using strong duality, this occurs if the dual problem is unbounded. Since the feasible region of the dual problem constitutes a cone, the dual problem is unbounded if and only if there is a feasible solution with an objective value of 1 or more. The dual problem is as below:

$$\begin{aligned} \begin{array}{cll} \max &{} \displaystyle \sum _{n\in \mathcal {N}}-\alpha _{n}(\varvec{l})+(N-J)\alpha _{N+1}(\varvec{l}) - \sum _{{\begin{matrix} k\in \mathcal {K}\\ l_{k} \ne 0 \end{matrix}}}(y^{k}_{l_{k}} - 1)\nu _{k}(\varvec{l})\\ \text {s.t.} &{} \varvec{\alpha }(\varvec{l}) \in \mathbb {R}_{+}^{N+1}, \; \varvec{\nu }(\varvec{l}) \in \mathbb {R}_{+}^{K}\\ &{} -\alpha _{n}(\varvec{l}) + \alpha _{N+1}(\varvec{l}) - \displaystyle \sum _{{\begin{matrix} k\in \mathcal {K}\\ l_{k} \ne 0 \end{matrix}}}\sum _{n'\in \delta (l_{k})}{x_{n'}}\nu _{k}(\varvec{l}) = 0 , \; \forall n \in \mathcal {N} \end{array} \end{aligned}$$
(28)

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rahmattalabi, A., Vayanos, P., Tambe, M. (2018). A Robust Optimization Approach to Designing Near-Optimal Strategies for Constant-Sum Monitoring Games. In: Bushnell, L., Poovendran, R., Başar, T. (eds) Decision and Game Theory for Security. GameSec 2018. Lecture Notes in Computer Science(), vol 11199. Springer, Cham. https://doi.org/10.1007/978-3-030-01554-1_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-01554-1_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-01553-4

  • Online ISBN: 978-3-030-01554-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics