Skip to main content

Data-Driven Design Optimization for Industrial Products

  • Chapter
  • First Online:
Optimization in Industry

Part of the book series: Management and Industrial Engineering ((MINEN))

Abstract

Prescriptive data analytics along with optimization techniques in complex industrial processes lead to extraction of useful knowledge from the data, mapping of the relation between the inputs and outputs of the products and/or processes, product quality improvement, cost reduction, process simplification and designing new product with improved performance. There are several statistical methods and soft computing techniques, which are useful to generate the objective functions for optimization from industrial data. In this chapter, a case study is discussed where ANN model with desirability function forms the objective function. GA-based search is employed to get the optimized solutions, and to find the behaviour of the alloying elements in steel with desired performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ramachandran, K. M., & Tsokos, C. P. (2009). Mathematical statistics with applications. Gurgaon, India: Elsevier.

    MATH  Google Scholar 

  2. Datta, S. (2016). Materials design using computational intelligence techniques. CRC Press.

    Google Scholar 

  3. Kumar, Satish. (2004). Neural networks—A classroom approach. New Delhi: Tata McGraw-Hill Publishing Company Limited.

    Google Scholar 

  4. Datta, S., & Chattopadhyay, P. P. (2013). Soft computing techniques in advancement of structural metals. International Materials Reviews, 58, 475–504.

    Article  Google Scholar 

  5. Kundu, M., Ganguly, S., Datta, S., & Chattopadhyay, P. P. (2009). Simulating time temperature transformation diagram of steel using artificial neural network. Materials and Manufacturing Processes, 24, 169–173.

    Article  Google Scholar 

  6. Goldberg, D. E. (2002). Genetic algorithms in search, optimization and machine learning. Pearson-Education: New Delhi.

    Google Scholar 

  7. Deb, K. (2001). Multi-objective optimization using evolutionary algorithms. Chichester: John Wiley & Sons Ltd.

    MATH  Google Scholar 

  8. Chakraborti, N. (2004). Genetic algorithms in materials design and processing. International Materials Reviews, 49, 246–260.

    Article  Google Scholar 

  9. Das, P., Mukherjee, S., Ganguly, S., Bhattacharyay, B. K., & Datta, S. (2009). Genetic algorithm based optimization for multi-physical properties of HSLA steel through hybridization of NN and desirability function. Computational Materials Science, 45, 104–110.

    Article  Google Scholar 

  10. Banerjee, A., Bandyopadhyay, T., & Acharya, P. (2013). Data analytics: Hyped up aspirations or true potential? Vikalpa, 38, 1–11.

    Article  Google Scholar 

  11. Gorni, A. A. (2015). Steel forming and heat treating handbook, Version of 20 January 2015. www.gorni.eng.br/e/Gorni_SFHTHandbook.pdf.

  12. Bhadeshia, H. K. D. H. (1999). Neural networks in materials science. ISIJ International, 39, 966–979.

    Article  Google Scholar 

  13. Bhadeshia, H. K. D. H. (2009). Neural networks and information in materials science. Statistical Analysis and Data Mining: The ASA Data Science Journal, 1, 296–305.

    Article  MathSciNet  Google Scholar 

  14. Datta, S., & Banerjee, M. K. (2004). Kohonen network modeling of thermo-mechanically processed HSLA steel. ISIJ International, 44, 846–851.

    Article  Google Scholar 

  15. Mohanty, I., Datta, S., & Bhattacharjee, D. (2009). Composition-processing-property correlation of cold rolled IF steel sheets using neural network. Materials and Manufacturing Processes, 24, 100–105.

    Google Scholar 

  16. Sinha, A., Dey, S., Chattopadhyay, P. P., & Datta, S. (2013). Optimization of mechanical property and shape recovery behavior of Ti-(∼49 at%) Ni alloy using artificial neural network and genetic algorithm. Materials & Design, 46, 227–234.

    Article  Google Scholar 

  17. Datta, S., Sultana, N., Zhang, Q., & Mahfouf, M. (2013). Optimal design of titanium alloys for prosthetic applications using a multi-objective evolutionary algorithm. Materials and Manufacturing Processes, 28, 741–745.

    Article  Google Scholar 

  18. Dey, S., Datta, S., Chattopadhyay, P. P., & Sil, J. (2008). Modeling the properties of TRIP steel using AFIS: A distributed approach. Computational Materials Science, 43, 501–511.

    Article  Google Scholar 

  19. Dey, S., Dey, P., & Datta, S. (2017). Rough-fuzzy-GA based search for Al alloys for cryogenic application. Materials and Manufacturing Processes, 32, 1075–1081.

    Article  Google Scholar 

  20. Dey, S., Dey, P., Datta, S., & Sil, J. (2009). A rough set approach to predict strength and ductility of TRIP steel. Materials and Manufacturing Processes, 24, 150–154.

    Article  Google Scholar 

  21. Dey, S., Dey, P., & Datta, S. (2017). Design of novel age-hardenable aluminium alloy using evolutionary computation. Journal of Alloys and Compounds, 704, 373–381.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Swati Dey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dey, S., Gupta, N., Pathak, S., Kela, D.H., Datta, S. (2019). Data-Driven Design Optimization for Industrial Products. In: Datta, S., Davim, J. (eds) Optimization in Industry. Management and Industrial Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-01641-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-01641-8_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-01640-1

  • Online ISBN: 978-3-030-01641-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics