Skip to main content

Social Bot Detection Using Tweets Similarity

  • Conference paper
  • First Online:
Security and Privacy in Communication Networks (SecureComm 2018)

Abstract

Social bots are intelligent programs that have the ability to receive instructions and mimic real users’ behaviors on social networks, which threaten social network users’ information security. Current researches focus on modeling classifiers from features of user profile and behaviors that could not effectively detect burgeoning social bots. This paper proposed to detect social bots on Twitter based on tweets similarity which including content similarity, tweet length similarity, punctuation usage similarity and stop words similarity. In addition, the LSA (Latent semantic analysis) model is adopted to calculate similarity degree of content. The results show that tweets similarity has significant effect on social bot detection and the proposed method can reach 98.09% precision rate on new data set, which outperforms Madhuri Dewangan’s method.

Project supported by National Key R&D Program of China (2017YFB0802703), National Natural Science Foundation of China (61602052).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Charikar, M.S.: Similarity estimation techniques from rounding algorithms. In: Proceedings of ACM Symposium on Theory of Computing, STOC, pp. 380–388 (2002)

    Google Scholar 

  2. Chavoshi, N., Hamooni, H., Mueen, A.: Identifying correlated bots in Twitter. In: International Conference on Social Informatics, pp. 14–21 (2016)

    Google Scholar 

  3. Chu, Z., Gianvecchio, S., Wang, H., Jajodia, S.: Who is tweeting on Twitter: human, bot, or cyborg? In: Computer Security Applications Conference, pp. 21–30 (2010)

    Google Scholar 

  4. Clayton A. Davis, Onur Varol, E.F.: Bot or not? http://truthy.indiana.edu/botornot/

  5. Dewangan, M., Kaushal, R.: SocialBot: Behavioral Analysis and Detection. Springer, Singapore (2016). https://doi.org/10.1007/978-981-10-2738-3_39

    Book  Google Scholar 

  6. Dickerson, J.P., Kagan, V., Subrahmanian, V.S.: Using sentiment to detect bots on Twitter: are humans more opinionated than bots? In: IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 620–627 (2014)

    Google Scholar 

  7. Dumais, S.T.: Latent semantic analysis. Ann. Rev. Inf. Sci. Technol. 38(1), 188–230 (2015)

    Article  Google Scholar 

  8. Evangelopoulos, N.E.: Latent semantic analysis. Wiley Interdisc. Rev. Cogn. Sci. 4(6), 683–692 (2013)

    Article  Google Scholar 

  9. Glvez, R.H., Gravano, A.: Assessing the usefulness of online message board mining in automatic stock prediction systems. J. Comput. Sci. 19, 43–56 (2017)

    Article  Google Scholar 

  10. Golder, S.A., Macy, M.W.: Diurnal and seasonal mood vary with work, sleep, and daylength across diverse cultures. Science 333(6051), 1878–1881 (2011)

    Article  Google Scholar 

  11. Hill, K.: The invasion of the Twitter bots (2012). http://www.forbes.com/sites/kashmirhill/2012/08/09/the-invasion-of-the-Twitter-bots/

  12. Lee, K., Eoff, B.D., Caverlee, J.: Seven months with the devils: a long-term study of content polluters on Twitter. In: International Conference on Weblogs and Social Media, Barcelona, July 2011

    Google Scholar 

  13. McNally, L.: Botwiki. https://botwiki.org/resources/Twitterbots/

  14. Morstatter, F., Wu, L., Nazer, T.H., Carley, K.M., Liu, H.: A new approach to bot detection: striking the balance between precision and recall. In: IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 533–540 (2016)

    Google Scholar 

  15. Perdana, R.S., Muliawati, T.H., Alexandro, R.: Bot spammer detection in Twitter using tweet similarity and time interval entropy. J. Inorgan. Biochem. 105(4), 518–524 (2015)

    Google Scholar 

  16. Roesslein, J.: Tweepy. www.tweepy.org (2009)

  17. Shafahi, M., Kempers, L., Afsarmanesh, H.: Phishing through social bots on Twitter. In: IEEE International Conference on Big Data, pp. 3703–3712 (2017)

    Google Scholar 

  18. Sharma, R.: 15 awesome Twitter bots you should follow (2016). https://beebom.com/best-twitter-bots/

  19. Subrahmanian, V.S.: The darpa Twitter bot challenge. Computer 49(6), 38–46 (2016)

    Article  Google Scholar 

  20. U.S. Securities, E.C.: Amendment no. 1 to form s-1 (2014). http://www.sec.gov/Archives/edgar/data/1418091/000119312513400028/

  21. Varol, O., Ferrara, E., Davis, C.A., Menczer, F., Flammini, A.: Online human-bot interactions: detection, estimation, and characterization. In: The 11th International AAAI Conference on Web and Social Media (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunhua Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, Y., Wu, C., Zheng, K., Wang, X. (2018). Social Bot Detection Using Tweets Similarity. In: Beyah, R., Chang, B., Li, Y., Zhu, S. (eds) Security and Privacy in Communication Networks. SecureComm 2018. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 255. Springer, Cham. https://doi.org/10.1007/978-3-030-01704-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-01704-0_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-01703-3

  • Online ISBN: 978-3-030-01704-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics