Abstract
Social bots are intelligent programs that have the ability to receive instructions and mimic real users’ behaviors on social networks, which threaten social network users’ information security. Current researches focus on modeling classifiers from features of user profile and behaviors that could not effectively detect burgeoning social bots. This paper proposed to detect social bots on Twitter based on tweets similarity which including content similarity, tweet length similarity, punctuation usage similarity and stop words similarity. In addition, the LSA (Latent semantic analysis) model is adopted to calculate similarity degree of content. The results show that tweets similarity has significant effect on social bot detection and the proposed method can reach 98.09% precision rate on new data set, which outperforms Madhuri Dewangan’s method.
Project supported by National Key R&D Program of China (2017YFB0802703), National Natural Science Foundation of China (61602052).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Charikar, M.S.: Similarity estimation techniques from rounding algorithms. In: Proceedings of ACM Symposium on Theory of Computing, STOC, pp. 380–388 (2002)
Chavoshi, N., Hamooni, H., Mueen, A.: Identifying correlated bots in Twitter. In: International Conference on Social Informatics, pp. 14–21 (2016)
Chu, Z., Gianvecchio, S., Wang, H., Jajodia, S.: Who is tweeting on Twitter: human, bot, or cyborg? In: Computer Security Applications Conference, pp. 21–30 (2010)
Clayton A. Davis, Onur Varol, E.F.: Bot or not? http://truthy.indiana.edu/botornot/
Dewangan, M., Kaushal, R.: SocialBot: Behavioral Analysis and Detection. Springer, Singapore (2016). https://doi.org/10.1007/978-981-10-2738-3_39
Dickerson, J.P., Kagan, V., Subrahmanian, V.S.: Using sentiment to detect bots on Twitter: are humans more opinionated than bots? In: IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 620–627 (2014)
Dumais, S.T.: Latent semantic analysis. Ann. Rev. Inf. Sci. Technol. 38(1), 188–230 (2015)
Evangelopoulos, N.E.: Latent semantic analysis. Wiley Interdisc. Rev. Cogn. Sci. 4(6), 683–692 (2013)
Glvez, R.H., Gravano, A.: Assessing the usefulness of online message board mining in automatic stock prediction systems. J. Comput. Sci. 19, 43–56 (2017)
Golder, S.A., Macy, M.W.: Diurnal and seasonal mood vary with work, sleep, and daylength across diverse cultures. Science 333(6051), 1878–1881 (2011)
Hill, K.: The invasion of the Twitter bots (2012). http://www.forbes.com/sites/kashmirhill/2012/08/09/the-invasion-of-the-Twitter-bots/
Lee, K., Eoff, B.D., Caverlee, J.: Seven months with the devils: a long-term study of content polluters on Twitter. In: International Conference on Weblogs and Social Media, Barcelona, July 2011
McNally, L.: Botwiki. https://botwiki.org/resources/Twitterbots/
Morstatter, F., Wu, L., Nazer, T.H., Carley, K.M., Liu, H.: A new approach to bot detection: striking the balance between precision and recall. In: IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 533–540 (2016)
Perdana, R.S., Muliawati, T.H., Alexandro, R.: Bot spammer detection in Twitter using tweet similarity and time interval entropy. J. Inorgan. Biochem. 105(4), 518–524 (2015)
Roesslein, J.: Tweepy. www.tweepy.org (2009)
Shafahi, M., Kempers, L., Afsarmanesh, H.: Phishing through social bots on Twitter. In: IEEE International Conference on Big Data, pp. 3703–3712 (2017)
Sharma, R.: 15 awesome Twitter bots you should follow (2016). https://beebom.com/best-twitter-bots/
Subrahmanian, V.S.: The darpa Twitter bot challenge. Computer 49(6), 38–46 (2016)
U.S. Securities, E.C.: Amendment no. 1 to form s-1 (2014). http://www.sec.gov/Archives/edgar/data/1418091/000119312513400028/
Varol, O., Ferrara, E., Davis, C.A., Menczer, F., Flammini, A.: Online human-bot interactions: detection, estimation, and characterization. In: The 11th International AAAI Conference on Web and Social Media (2017)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering
About this paper
Cite this paper
Wang, Y., Wu, C., Zheng, K., Wang, X. (2018). Social Bot Detection Using Tweets Similarity. In: Beyah, R., Chang, B., Li, Y., Zhu, S. (eds) Security and Privacy in Communication Networks. SecureComm 2018. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 255. Springer, Cham. https://doi.org/10.1007/978-3-030-01704-0_4
Download citation
DOI: https://doi.org/10.1007/978-3-030-01704-0_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-01703-3
Online ISBN: 978-3-030-01704-0
eBook Packages: Computer ScienceComputer Science (R0)