Skip to main content

Linked Document Classification by Network Representation Learning

  • Conference paper
  • First Online:
Chinese Computational Linguistics and Natural Language Processing Based on Naturally Annotated Big Data (CCL 2018, NLP-NABD 2018)

Abstract

Network Representation Learning (NRL) can learn a latent space representation of each vertex in a topology network structure to reflect linked information. Recently, NRL algorithms have been applied to obtain document embedding in linked document network, such as citation websites. However, most existing document representation methods with NRL are unsupervised and they cannot combine NRL with a concrete task-specific NLP tasks. So in this paper, we propose a unified end-to-end hybrid Linked Document Classification (LDC) model which can capture semantic features and topological structure of documents to improve the performance of document classification. In addition, we investigate to use a more flexible strategy to capture structure similarity to improve the traditional rigid extraction of linked document topology structure. The experimental results suggest that our proposed model outperforms other document classification methods especially in the case of having less training sets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://arnetminer.org/citation (V4 version is used)

  2. 2.

    http://citeseerx.ist.psu.edu/

References

  • Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. J. Mach. Learn. Res. 3, 993–1022 (2003)

    MATH  Google Scholar 

  • Cai, D., Zhang, D., Zhai, C.: Topic modeling with network regularization. In: Proceedings of the 17th International Conference on World Wide Web, pp. 101–110. ACM, China (2008)

    Google Scholar 

  • Cho, K., et al.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078 (2014)

  • Ganguly, S., Gupta, M., Varma, V., Pudi, V.: Author2Vec: learning author representations by combining content and link information. In: International Conference Companion on World Wide Web. International World Wide Web Conferences Steering Committee, pp. 49–50 (2016)

    Google Scholar 

  • Grover, A., Leskovec, J.: node2vec: scalable feature learning for networks. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 855–864. ACM (2016)

    Google Scholar 

  • Kalchbrenner, N., Grefenstette, E., Blunsom, P.: A convolutional neural network for modelling sentences. arXiv preprint arXiv:1404.2188 (2014)

  • Landauer, T.K., Foltz, P.W., Laham, D.: An introduction to latent semantic analysis. Discourse Process. 25(2–3), 259–284 (1998)

    Article  Google Scholar 

  • Le, Q., Mikolov, T.: Distributed representations of sentences and documents. In: International Conference on Machine Learning, pp. 1188–1196 (2014)

    Google Scholar 

  • Li, J., Ritter, A., Jurafsky, D.: Learning multi-faceted representations of individuals from heterogeneous evidence using neural networks. arXiv preprint arXiv:1510.05198 (2015)

  • Li, J., Zhu, J., Zhang, B.: Discriminative deep random walk for network classification. Meeting of the Association for Computational Linguistics, pp. 1004–1013 (2016)

    Google Scholar 

  • Massa, P., Avesani, P.: Trust-aware recommender systems. In: Proceedings of the 2007 ACM Conference on Recommender systems, pp. 17–24. ACM (2007)

    Google Scholar 

  • Mei, Q. Ma, H., Lyu, M.R., King, I.: Learning to recommend with trust and distrust relationships. In: RecSys, pp. 189–196. ACM (2009)

    Google Scholar 

  • Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 (2013)

  • Nakagawa, T., Inui, K., Kurohashi, S.: Dependency tree-based sentiment classification using CRFs with hidden variables. In: Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the Association for Computational Linguistics, pp. 786–794. Association for Computational Linguistics (2010)

    Google Scholar 

  • Pan, S., Wu, J., Zhu, X., Zhang, C., Wang, Y.: Tri-party deep network representation. In: International Joint Conference on Artificial Intelligence, pp. 1895–1901. AAAI Press (2016)

    Google Scholar 

  • Perozzi, B., Al-Rfou, R., Skiena, S.: Deepwalk: online learning of social representations. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 701–710. ACM (2014)

    Google Scholar 

  • Pennington, J., Socher, R., Manning, C.: Glove: global vectors for word representation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing. EMNLP, pp. 1532–1543 (2014)

    Google Scholar 

  • Prabowo, R., Thelwall, M.: Sentiment analysis: a combined approach. J. Inf. 3(2), 143–157 (2009)

    Google Scholar 

  • Salton, G., Buckley, C.: Term-weighting approaches in automatic text retrieval. Inf. Process. Manag. 24(5), 513–523 (1988)

    Article  Google Scholar 

  • Schuster, M., Paliwal, K.K.: Bidirectional recurrent neural networks. IEEE Trans. Signal Process. 45(11), 2673–2681 (1997)

    Article  Google Scholar 

  • Smilkov, D., Thorat, N., Nicholson, C., Reif, E., Viégas, F.B., Wattenberg, M.: Embedding Projector: interactive visualization and interpretation of embeddings. arXiv preprint arXiv:1611.05469 (2016)

  • Sun, X., Guo, J., Ding, X., Liu, T.: A general framework for content-enhanced network representation learning. arXiv preprint arXiv:1610.02906 (2016)

  • Tang, J., Liu, H.: Feature selection with linked data in social media. In: Proceedings of the 2012 SIAM International Conference on Data Mining, pp. 118–128. Society for Industrial and Applied Mathematics (2012)

    Google Scholar 

  • Tang, J., Qu, M., Mei, Q.: PTE: predictive text embedding through large-scale heterogeneous text networks. In: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1165–1174. ACM (2015)

    Google Scholar 

  • Trappey, A.J., Hsu, F.C., Trappey, C.V., Lin, C.I.: Development of a patent document classification and search platform using a back-propagation network. Expert Syst. Appl. 31(4), 755–765 (2006)

    Article  Google Scholar 

  • Tu, C., Liu, H., Liu, Z., Sun, M.: CANE: context-aware network embedding for relation modeling. In: Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, vol. 1, pp. 1722–1731 (2017)

    Google Scholar 

  • Yang, C., Liu, Z., Zhao, D., Sun, M., Chang, E.Y.: Network representation learning with rich text information. In: International Conference on Artificial Intelligence, pp. 2111–2117. AAAI Press (2015)

    Google Scholar 

  • Wang, S., Tang, J., Aggarwal, C., Liu, H.: Linked document embedding for classification. In: Proceedings of the 25th ACM International on Conference on Information and Knowledge Management, pp. 115–124. ACM (2016)

    Google Scholar 

  • Zhang, D., Yin, J., Zhu, X., Zhang, C.: Network representation learning: a survey. arXiv preprint arXiv:1801.05852 (2017)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yao Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, Y., Zhang, L., Liu, Y. (2018). Linked Document Classification by Network Representation Learning. In: Sun, M., Liu, T., Wang, X., Liu, Z., Liu, Y. (eds) Chinese Computational Linguistics and Natural Language Processing Based on Naturally Annotated Big Data. CCL NLP-NABD 2018 2018. Lecture Notes in Computer Science(), vol 11221. Springer, Cham. https://doi.org/10.1007/978-3-030-01716-3_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-01716-3_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-01715-6

  • Online ISBN: 978-3-030-01716-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics